
STATIONARY FIELDS IN OBJECT-ORIENTED PROGRAMS

A DISSERTATION SUBMITTED TO

THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Christopher Unkel

October 2009



c© Copyright by Christopher Unkel 2010

All Rights Reserved

ii



I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Monica S. Lam) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Alex Aiken)

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(David L. Dill)

Approved for the University Committee on Graduate Studies.

iii



Abstract

This dissertation introduces stationary fields, which are widely prevalent in Java

programs, and which have a property useful for reasoning about programs.

Java programmers can document that the relationship between two objects is

unchanging by declaring the field that encodes that relationship to be final. This

information can be used in program understanding and detection of errors in new

code additions. Unfortunately, few fields in programs are actually declared final.

Programs often contain fields that could be final, but are not declared so. Moreover,

the definition of final has restrictions on initialization that limit its applicability.

We introduce stationary fields as a generalization of final. A field in a program

is stationary if, for every object that contains it, all writes to the field occur before all

the reads. Unlike the definition of final fields, there can be multiple writes during

initialization, and initialization can span multiple methods.

We have developed an efficient algorithm for inferring which fields are stationary

in a program, based on the observation that many fields acquire their value very close

to object creation. We presume that an object’s initialization phase has concluded

when its reference is saved in some heap object. We perform precise analysis only

regarding recently created objects. Applying our algorithm to real-world Java pro-

grams demonstrates that stationary fields are very common. Furthermore, stationary

fields are much more common than final fields: 44–59% vs. 11–17% respectively in

our benchmarks.

Guided by the experimental results, we show two programming idioms that violate

the stationary field property, how the definition may be expanded to cover these cases,

and corresponding analyses to locate these fields.

iv



We show four applications of stationary fields to program analysis and understand-

ing, as first examples of how stationary fields are useful. Three of the applications

are to concurrent programs, an increasingly important area. They take advantage of

an important property of stationary fields: because they do not change after their

initialization, inter-thread interference through them is impossible. This property

makes reasoning about concurrent programs easier, and we expect applications of

stationary fields to concurrent programs to be a fruitful avenue of further research.

v



Acknowledgements

I offer my gratitude to those who have provided me advice, ideas, camaraderie, pa-

tience, and entertainment during my time at Stanford: first and foremost, my adviser

Monica Lam; the members of my reading and orals committees; my colleagues at

Stanford, Kealia, Sun, and Silicon Image; my friends; and my family. Without their

support completing this research would have been impossible instead of challenging.

Finally, my thanks to the staff of MoonBean’s Coffee for approximately 2 × 103

caffe lattes.

vi



Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

1.1 Final Fields in Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Automatic Inference of Final Fields . . . . . . . . . . . . . . . . . . . 3

1.3 Stationary Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Inferring Stationary Fields . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.7 Paper Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Stationary Fields 8

2.1 Stationary and Nonstationary Fields . . . . . . . . . . . . . . . . . . 8

2.2 Final Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Verifying Final Fields . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Inferring Final . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Inferring Stationary Fields . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Program Representation . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Effect of Each Method . . . . . . . . . . . . . . . . . . . . . . 14

2.3.3 Effect of Each Statement . . . . . . . . . . . . . . . . . . . . . 15

2.3.4 Inference Rules . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.5 Solution Procedure . . . . . . . . . . . . . . . . . . . . . . . . 20

vii



3 Study of Programs 24

3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Static Analysis of Stationary and Final Fields . . . . . . . . . . . . . 29

3.2.1 Stationary Nonfinal Fields . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Inferred Final Fields . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.3 Nonstationary Final Fields . . . . . . . . . . . . . . . . . . . . 37

3.2.4 Semi-Stationary Fields . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Implementation Validation with Dynamic Analysis . . . . . . . . . . 40

3.4 Dynamic Analysis of Stationary and Final Fields . . . . . . . . . . . 40

3.5 Bounds Derived from Dynamic Analysis . . . . . . . . . . . . . . . . 44

3.6 Distribution of Stationary and Nonstationary Fields Within Objects . 46

3.6.1 Value Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Extensions to the Definition 54

4.1 Lazy Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.2 Program Study . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Object Disposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.3 Program Study . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.4 Resource Management . . . . . . . . . . . . . . . . . . . . . . 63

4.2.5 Other Uses of Null . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Applications of Stationary Fields 66

5.1 Lock Elision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.1 Stationary Fields and Races . . . . . . . . . . . . . . . . . . . 67

5.1.2 Unnecessary Synchronizations . . . . . . . . . . . . . . . . . . 67

5.1.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Optimizing a Software Transactional Memory . . . . . . . . . . . . . 70

5.2.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 70

viii



5.3 Optimizing Interthread Communication Monitoring . . . . . . . . . . 72

5.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.2 Dynamically Monitoring Thread Communication with Tags . . 74

5.3.3 Reducing the Space Overhead with Stationary Fields . . . . . 75

5.3.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 The Java Hash Code Method . . . . . . . . . . . . . . . . . . . . . . 79

5.4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.2 Stationary Fields and hashCode . . . . . . . . . . . . . . . . . 80

5.4.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4.4 Program Study . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Related Work 86

6.1 Immutability in Java . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2 Immutability in Other Languages . . . . . . . . . . . . . . . . . . . . 87

6.3 Purity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Escape Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.5 Stationary Fields and Concurrency . . . . . . . . . . . . . . . . . . . 89

6.6 Correctness of hashCode . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Conclusion 91

Bibliography 93

ix



List of Figures

2.1 Code fragment from and using button object showing stationary fields. 9

2.2 Inference rules for finding nonstationary fields S̄. . . . . . . . . . . . . 16

2.3 Inference rules for finding nonstationary fields S̄. . . . . . . . . . . . . 17

2.4 Pseudocode for our algorithm for identifying stationary fields. . . . . 21

3.1 Benchmark programs used in our experiments. . . . . . . . . . . . . . 25

3.2 Percentages of reference-typed fields by stationary and final status,

excluding packages sun.*. . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Percentages of reference-typed fields by stationary and final status,

excluding packages java.*, javax.*, and sun.*. . . . . . . . . . . . . 27

3.4 Percentages of primitive-typed fields by stationary and final status,

excluding packages sun.*. . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Stationary fields found by our inference algorithm: reference-typed

fields, application only . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Stationary fields found by our inference algorithm: primitive-typed fields 31

3.7 Stationary fields found by our inference algorithm: reference-typed

fields, application only . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.8 Stationary fields found by our inference algorithm: primitive-typed

fields, application only . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.9 Reasons why stationary fields cannot be declared final. Percentages

of stationary, non-final, reference-typed fields. . . . . . . . . . . . . . 36

3.10 Percentage of reference-typed fields that are semi-stationary. All fields

excludes sun.*; application only also excludes java.* and javax.*. 39

x



3.11 Percentages of dynamic reads of reference-typed fields, excluding pack-

ages sun.*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.12 Percentages of dynamic reads of primitive-typed fields, excluding pack-

ages sun.*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.13 Statically and dynamically stationary fields in the SPECJVM bench-

marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.14 Distribution of stationary fields within classes in the Azureus bench-

mark (application classes only) . . . . . . . . . . . . . . . . . . . . . 47

3.15 Distribution of stationary fields within classes (application classes only),

benchmarks azureus–jetty . . . . . . . . . . . . . . . . . . . . . . . . 48

3.16 Distribution of stationary fields within classes (application classes only),

benchmarks jgraph–spec/compress . . . . . . . . . . . . . . . . . . . 49

3.17 Distribution of stationary fields within classes (application classes only),

benchmarks spec/jess–umldot . . . . . . . . . . . . . . . . . . . . . . 50

3.18 Percentage of classes composed entirely of stationary fields . . . . . . 51

3.19 Percentage of classes composed only of stationary fields (application

only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Code showing lazy initializer. . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Inference rules for finding lazy initializers. . . . . . . . . . . . . . . . 58

4.3 Inference rules for finding lazy initializers. . . . . . . . . . . . . . . . 59

4.4 Fields with lazy initializers. . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Fields that are stationary except for being set to null. . . . . . . . . . 64

5.1 Synchronized methods that use only stationary fields. . . . . . . . . . 69

5.2 Barrier swap performance of software transactional memory on SPECjbb

benchmark using stationary fields analysis. . . . . . . . . . . . . . . . 71

5.3 Performance of a software transactional memory on SPECjbb bench-

mark using stationary fields analysis. . . . . . . . . . . . . . . . . . . 73

5.4 Performance of software transactional memory on SPECjbb benchmark

using stationary fields analysis (optimal number of threads). . . . . . 73

xi



5.5 Space overhead of monitoring thread communication with and without

optimization using stationary fields . . . . . . . . . . . . . . . . . . . 78

5.6 Percentage of hashCode methods using only stationary fields . . . . . 81

5.7 Percentage of hashCode methods using only stationary fields (applica-

tion only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xii



Chapter 1

Introduction

Tools for program analysis have provided large benefits in the form of increased

programmer productivity. Tools have optimized programs, parallelized programs,

found errors in programs, and allowed programmers to operate at higher levels of

abstraction. Recently, much attention has been given to program analysis to aid in

program correctness: tools that help programmers avoid or detect errors.

In order for program analysis tools to function, and to continue to provide benefits,

they must be able to reason about the programs. Of course, programmers must also

reason about the programs they write. For any important property of a program, the

programmer should have a reason to believe the property holds. The key to allowing

a tool to understand why the property holds is often recreating the programmer’s

reasoning. Understanding ways that programmers commonly reason about programs

can therefore help us create better tools.

In programs written in an object-oriented programming language, it is often the

case that one object has a fixed relationship to another object. For example, an object

composed of smaller objects will have a fixed relationship to each of its components.

Such relationships are frequently captured in some fields of an object soon after the

object is created. The field may be written multiple times during the initialization

phase, but it stabilizes before it is used and remains constant for the rest of its object’s

lifetime. We refer to such fields as stationary.

Knowing which fields are stationary provides an object-oriented basis for reasoning

1



CHAPTER 1. INTRODUCTION 2

about aliases for objects across time. Programmers naturally use these invariants

when reasoning about their programs. They don’t worry that an object’s parent has

changed, because they know—or perhaps assume—that no code ever alters a child’s

parent. When programmers want to know the identity of the window’s parent, they

will start looking close to where the window is created to find out what the relationship

is. Stationary fields offer a different approach to reasoning about objects. We shall

show that it is relative easy to find stationary fields in a program. Once we know that

a field is stationary, we can conclude that two reads of the same field of an object are

the same without tracking all the pointers that may possibly point to the object of

interest. This suggests that it is beneficial for compilers and program analysis tools

to understand stationary fields, as programmers already do. This may lead to a more

precise points-to analysis with less effort.

1.1 Final Fields in Java

The presence of unvarying relationships between objects is not a new observation, as

this notion motivated the design of Java’s final fields. A Java programmer can de-

clare an object instance field (Java nomenclature for fields inside objects) to be final,

which, informally, means that it does not change once initialized. The Java Language

Specification observes: “Declaring a variable final can serve as useful documentation

that its value will not change and can help avoid programming errors.” [15] The

Java compiler provides aid in avoiding mistakes by enforcing properties in code it

compiles. These properties combine to ensure that final fields, once initialized by

the constructor, are not modified by ordinary means. (Declaring a field final does

not guarantee absolutely that it is constant: it may still be modified by extraordinary

means such as reflection, native methods, and other implementation-dependent func-

tionality.) Declaring a field final prevents programmers from making the mistake of

modifying fields that should be constant, by directing the compiler to reject programs

that erroneously change those fields.

The properties of final fields are defined so that verifying them fits within Java’s

model of compilation and dynamic class loading. Specifically, because Java classes



CHAPTER 1. INTRODUCTION 3

may be compiled separately, and because they are then loaded separately, it must be

possible to verify the property by examining a single class at a time. In fact, it is

possible to verify the property by examining a single method at a time.

1.2 Automatic Inference of Final Fields

We speculate that there are many more fields that are being used like they are final

without being declared as such. Automatic final field inference is useful because the

information can serve as documentation and may be used for other analyses. It can

also be used to find errors in subsequent code modifications in the software develop-

ment process. Suppose a field is used originally as a final field; if subsequent code

additions violate this pattern, then it may be worthwhile to flag the inconsistency as

a possible error. Many recent projects have used the idea of intent to infer properties

in the absence of accurate declarations or documentation [10, 18, 19, 21, 23, 44, 45].

Such properties have been used to find thousands of critical errors in programs.

We can infer if a field can be legally declared as final in a program, by examining

the usage pattern of the field in the code. Note that in the presence of dynamic

loading, the inferred property holds only for the code examined.

The Java final field modifier is defined to admit a relatively simple verification

procedure. As a result, it is not as generally applicable as it could be. There are

several important limitations:

• A final field must be assigned exactly once on each execution path through

each constructor defined for the class containing it. This definition excludes the

case where the field is first defined for the common case, and based on some

exceptional conditions, the field can be updated before the field is ever accessed

otherwise.

• A final field must not be assigned outside the constructors of the class declaring

it. This is restrictive because the constructor might invoke utility procedures to

perform initialization; or, an object factory may create and return the object,

with the method using the factory responsible for the initialization.



CHAPTER 1. INTRODUCTION 4

• A final field is defined based on textual properties. A program may use a field

as if it is a final even though it contains unexecuted code that violates such

properties. This is especially prevalent if large, general Java libraries are used.

• Not all cases where a final field is read before it is assigned are identified and

prohibited: those through aliases to this, or in methods invoked by the con-

structor, are not found. However, the fact that most cases are identified and

prohibited suggests that it is undesirable to read such a field before it is written.

As we show in our empirical results, the definition of final fields greatly restricts

the number of fields encoding unvarying relationships to which it can be applied.

1.3 Stationary Fields

In practice, the initialization of a stationary field may span different methods. The

field may be written to multiple times during the initialization process. What is

important is that the value of the field must stabilize before the field is used. That

is, all reads of a stationary field of the same object are guaranteed to follow all the

writes, and thus must yield the same value.

Thus, we say that a field f in class c is stationary in a program if all writes to

field f in every object o of class c occur before all reads of f in o.

1.4 Inferring Stationary Fields

This thesis presents an algorithm for finding stationary fields in Java programs. The

analysis is subject to the usual caveats regarding reflection and native methods, but

is conservative otherwise. The results are thus useful for error detection and program

understanding tools, but should not be used for program optimization in the general

case.

Our algorithm makes the simplifying assumption that an object’s stationary fields

are initialized soon after the object is created, and that the initialization, which may

involve multiple writes and in multiple procedures, is complete before it is released for



CHAPTER 1. INTRODUCTION 5

use through other objects. Releasing an object for use usually means making some

other object refer to it: placing it in a list, registering a handler that uses it, etc. In

general, once an object is connected to other heap objects, it can be touched by many

different pieces of code. Thus, the object’s initialization phase usually ends when it is

pointed to by some heap object. (In Java, all objects are allocated on the heap; only

references to objects and primitive types such as int may be stored on the stack.)

We use a flow and context sensitive analysis to track the reads and writes of all

pointer variables and heap object fields. We keep track of the identity of each newly

created object accurately during its initialization phase. We accurately follow how

its references are assigned to local variables and passed as input parameters or return

values. However, once the object is stored into some heap reference, it is assumed

to exit its initialization phase. We abstract its identity away and represent it with a

special lost object. Any write to a field of this special object would render the field

not stationary. Because we do not have to keep track of the pointees in the fields of

heap objects, the algorithm converges quickly.

1.5 Experimental Results

We have implemented the algorithms presented in this report to automatically infer

final fields and stationary fields in Java programs. We have applied the algorithms

to 19 real-world Java programs and analyzed the results. To help validate our static

analysis algorithm, we have also developed a dynamic analysis that records, for each

field, if a write follows a read of the same location. Clearly, no such pairs should

ever be found for any stationary fields identified by our algorithm. We have found

this sanity check to be helpful in providing confidence that the algorithm and the

implementation are correct. In addition, we also record the number of times stationary

fields are read so as to assess if these fields are important in the execution of a program.

1.6 Contributions

The key contributions of this thesis are:



CHAPTER 1. INTRODUCTION 6

• The concept of stationary fields, a generalization of Java’s final that captures

a wider range of unchanging fields, primarily by relaxing the requirements on

initialization.

• An efficient interprocedural algorithm for finding stationary fields in Java pro-

grams.

• Empirical results on the number of inferred final and stationary fields across

19 real-world Java programs. In total, our algorithm analyzed 88292 classes

and 620884 methods. We found that stationary fields are widely present in

real-world Java programs and more common than final fields: 44–59% vs. 11–

17%. The experiments also address quantitatively how much each difference

between the definitions of stationary and final contributes to the prevalence

of stationary fields, and show that inferring final fields is valuable in its own

right.

• Dynamic results showing that stationary fields are an important part of the

runtime behavior of programs.

• Several example applications of stationary fields showing how stationary fields

can be used for program analysis and understanding. First, we show three

examples of stationary fields to concurrent programs. Because stationary fields

do not change after their initialization, threads cannot interfere with each other

by modifying them. We show how this property can be used to understand

and optimize multithreaded programs. In our last application, we examine how

stationary fields may be used to correctly maintain the invariants required when

implementing an interface used in the Java libraries.

1.7 Paper Organization

The remainder of this dissertation is organized as follows. The next chapter explores

stationary fields and their relationship to final in detail, culminating in our algorithm

for inferring stationary fields. In Chapter 3 we present our experiences applying our



CHAPTER 1. INTRODUCTION 7

algorithm to Java programs and our analysis of the results. Guided in part by these

results, in Chapter 4 we show two extensions of the definition of stationary fields.

In Chapter 5, we show several applications as examples of how stationary fields are

useful. We briefly discuss related work in Chapter 6 and conclude in Chapter 7.



Chapter 2

Stationary Fields

In the first chapter, we introduced and defined stationary fields. This chapter explores

stationary fields in more detail. We first give a brief example showing a stationary

field and how the property it gives helps us reason about a program invariant.

Stationary fields are related to Java’s final fields. For reference, we summarize

the definition of final fields. The differences between final and stationary motivate

the design of our algorithm for finding stationary fields.

2.1 Stationary and Nonstationary Fields

Consider the code fragment in Figure 2.1, which might appear in a GUI-based pro-

gram. Assume that this is only a fragment of our button class, but that none of

the other methods modify field parent. The button’s parent field shows a common

type of stationary field: it encodes the object’s position in a hierarchy in which ob-

jects may be created or destroyed, but in which they never move. This example also

shows the use of a factory method, a common motivation for initialization outside

the constructor. The factory method itself calls the constructor for Button, so we

cannot provide arguments. The example also shows why stationary fields are useful

for reasoning about programs: we know that the button is always removed from the

window to which it is added because the parent field is stationary. Another common

case of stationary fields occurs when an object is created as a composite of smaller

8



CHAPTER 2. STATIONARY FIELDS 9

class Button {
private Window parent;

void setParent(Window parent) {
this.parent = parent;

}

void destroy() {
parent.removeChild(this);

}

void onClick() {
parent.closeWindow();

}
}

Button b = ButtonFactory.newButton();
b.setParent(mainWindow);
mainWindow.addChild(b);

Figure 2.1: Code fragment from and using button object showing stationary fields.

objects.

Some examples of fields we would expect to be nonstationary include those en-

coding mutable current state of an object. For example, the current position of an

iterator changes repeatedly, as does the current state of a pattern matcher such as

a tokenizer. Another example is that of a role [22], where the state of an object is

captured by the existence of a reference from some other object. Changing roles are

encoded by nonstationary fields.

2.2 Final Fields

This section describes the algorithm used by the Java compiler to verify the legality

of code that includes final instance fields. We then progress to how we might infer

final fields.



CHAPTER 2. STATIONARY FIELDS 10

2.2.1 Verifying Final Fields

The Java Language Specification provides an algorithm that is used by a Java compiler

to verify that programs that declare final fields do not misuse them. Without loss

of generality, let us just consider the more complex case of a blank field, where the

final instance field is not initialized in the declaration in the following.

Intuitively, a final field is one that is assigned exactly once during any normal

execution of the constructor of the class declaring it, and never assigned elsewhere.

(There is no requirement that a final field be assigned should the constructor terminate

abruptly, that is, by throwing an exception.) However, since it is undecidable to

determine all the possible executed paths statically, the requirements for a final fields

are specified by the verification procedure used, as outlined below.

Let f be a final field in class c.

1. There is an error if any of the methods that are not constructors of c contain

an assignment to field f. Note that constructors of classes derived from c do

not count as constructors of c.

2. Perform a data flow analysis to determine if the field f is definitely assigned,

definitely unassigned, or neither, at each program point.

• Field f is definitely unassigned at the entry of the constructor.

• Executing an assignment “this.f=” or “f=”, provided there is no local

variable f, leaves field f definitely assigned.

• At a control-flow join point, f is definitely assigned or unassigned, re-

spectively, iff it is definitely assigned or unassigned, respectively, on both

incoming branches. Otherwise, f is considered to be neither.

• No other statements alter whether f is definitely assigned or definitely

unassigned.

3. Report an error if:

• f is not definitely assigned at the normal exit of the constructor.



CHAPTER 2. STATIONARY FIELDS 11

• f is not definitely unassigned immediately prior to an assignment “this.f=”

or “f=”.

• f is not definitely assigned immediately prior to a use of “this.f” or “f”.

• the constructor assigns to f through some variable other than this, e.g.

with “other.f=”.

Notice that the legality of code that uses final can be verified by examining

a single method at a time. This property of final allows it to fit within Java’s

compilation and loading process.

2.2.2 Inferring Final

The algorithm for verifying final can also be used to infer if a program uses a field

like it is final, assuming all the code to be executed is available. We simply assume

that a field is final, and execute the procedure for verifying a final field. If no errors

are produced, the field may safely be declared final, given all the code we have at

hand. If we do this for all fields, the result is a superset of fields that are declared

final, provided that the input code does not contain errors.

2.3 Inferring Stationary Fields

Our algorithm for inferring stationary reads accepts a Java program as input and

outputs a set of stationary fields in that program. The algorithm is subject to the

same caveats respecting reflection and native methods as final fields.

For stationary fields, programmers generally just read the initialization code and

assume that the field is not changed in the rest of the program because they under-

stand the meaning of the field. (Note that there may be errors in the program that

violate this assumption.) Like the programmer, our algorithm tracks the reads and

writes to each field carefully during initialization. But unlike the programmer, who

instinctively knows which fields are stationary, our algorithm needs to analyze if a

field is written into after initialization before it can declare the field to be stationary.



CHAPTER 2. STATIONARY FIELDS 12

Our algorithm makes the simplifying assumption that an object’s stationary fields

are initialized before its reference is stored into any objects. We say that an object

is lost once some other object points to it. Thus, a field f is stationary if

1. all the reads of field f in any object before it is lost occur after all the writes,

and

2. there are no writes to field f upon any lost object.

With this assumption, we can derive a relatively efficient stationary field analysis.

Our algorithm uses a hybrid approach to modeling objects. The algorithm tracks

aliases precisely for all objects until they are lost; it models all lost objects coarsely by

representing them with a special object denoted ⊥. Conversely, all field dereferences

are modeled as yielding the ⊥ object. Our algorithm is fast because tracking pointees

in heap objects is what makes pointer alias analysis expensive.

(We note here that our lost objects are related to escaped objects, as defined by

escape analysis. Escaped objects are those whose lifetime exceeds their static scope,

or that may be accessed outside some given scope. Lost objects do not necessarily

escape (for example if the object that contains the reference does not escape) and

escaped objects are not necessarily lost (for example if the object escapes by being

returned directly by the method.) Nonetheless, many of the ways objects may escape

involve the creation of a reference in the heap. Our lost refers only to the existence

of heap references.)

Our analysis is a flow-sensitive and context-sensitive interprocedural summary-

based algorithm. It computes a fixed point that summarizes how each method may

lose objects and render fields nonstationary in terms of its input parameters and

return value. The result of the entire program is given by the summary computed for

the entry method of the whole program. We track all the input and return parameters

accurately across method invocations, and the assignments of parameters and local

variables flow-sensitively.

Newly created objects are given local names preserving the context-sensitivity to

the location of their creation. We rename newly created objects that have not been

lost, and therefore have no aliases, as they are returned by methods. By giving such



CHAPTER 2. STATIONARY FIELDS 13

an object the name of the method that most recently returned it, we can distinguish

between objects created at the same line in the program, if the call stack to that spot

is different. This precision is important for analyzing factory methods. Using only

local names also keeps the set of potential pointees small, speeding the computation.

2.3.1 Program Representation

While our algorithm is defined for the full Java programming language, for the sake

of simplicity, we present the analysis over the following simplified language. There

is a set of methods m ∈ M . Methods have a set of local variables x, y ∈ V . There

is also a set f ∈ F of object fields, which are accessed using syntax of the form v.f .

The language has statements s ∈ ST of the following forms:

• an assignment statement x = y

• an object creation statement x = new()

• a load statement x = y.f

• a store statement x.f = f

• a sequence of statements s1; s2

• an if statement if ∼ then s1 else s2

• a while loop while ∼ do s

• a method declaration m(x1, . . . , xi){s; return y}

• a method invocation statement x = m(y1, . . . , yi)

We use the notation ∼ as a placeholder for the branch and loop conditions, which are

irrelevant to the analysis.



CHAPTER 2. STATIONARY FIELDS 14

2.3.2 Effect of Each Method

The input to our algorithm is a Java program and the main function to be invoked, and

the output of the algorithm is a set of stationary fields. The fixed point computation

keeps track of all the nonstationary fields found so far in a set called S̄; the complement

of S̄ at the end of the algorithm represents the result of the algorithm.

Our algorithm uses class hierarchy analysis (CHA) to compute the possible call

targets at each invocation [8]. It assumes that the target of a call site may be any

method consistent with the method being called and the type of the reference through

which the method is invoked. We include the class initializers of all used classes as if

they occurred at the start of the main function.

The analysis of each method m operates on the following set of abstract objects

o ∈ O:

• method input parameters A = {α1, α2, . . . }. The summary is computed para-

metrically with respect to the input parameters.

• allocation-site objects. This is the set of objects allocated by m and named by

the allocation site. These objects are not aliased at the time of creation.

• call-site objects. This is the set of objects representing objects created by m’s

callees and are named by the call site.

• the ⊥ object, used as a placeholder for untracked objects.

A method m and its callees may produce the following side effects that affect the

computation of stationary fields:

• generate a set of nonstationary fields, which are added to the set of nonstation-

ary fields found so far S̄.

• lose a set of input objects, Lm ⊆ A.

• write to a set of fields for each input parameter, Wm.

• read a set of fields for each input parameter, Em.



CHAPTER 2. STATIONARY FIELDS 15

• return a possible set of objects. It may

– return some lost object or input parameters. These are represented by the

set Rm.

– return some object created by m or its callees that has not been lost. In

addition, it may have read a set of fields Dm from the returned object, be-

fore it is returned. For the sake of simplicity, and without loss of precision,

we assume that a method always returns a new object that has not yet

been lost. That is, a fresh call-site object is always created to represent

such an object where m is invoked.

• generate a set of alias conditions Cm of the form 〈αi, αj, f〉, indicating that f is

nonstationary if arguments αi and αj can be the same object.

2.3.3 Effect of Each Statement

To compute the effect of each method, the algorithm uses a flow-sensitive analysis

statement by statement to track where objects become lost, and the pointer aliases

and reads of objects before they are lost. Thus, besides computing the effect of each

statement on the terms introduced above for each method summary, the analysis

keeps track of the following terms flow-sensitively, before and after every statement:

• P : a set of points-to relations 〈x, o〉 indicating that local variable x may point

to object o.

• U : untracked objects, objects that are lost in this method or its callees.

• Q: a set of object fields o.f indicating that field f of object o may have been

read previously.

2.3.4 Inference Rules

The properties of the solution are given by inference rules in Figure 2.2. The notation

P [x 7→ B] indicates P with all points-to relations involving x removed, and relations

added for x pointing to each element of B:



CHAPTER 2. STATIONARY FIELDS 16

(NEW)

P ′ = P [x 7→ β] β fresh

m,P, U,Q ` x = new()⇒ P ′, U,Q

(ASSIGN)

P ′ = P [x 7→ {o| 〈y, o〉 ∈ P}]
m,P, U,Q ` x = y ⇒ P ′, U,Q

(LOAD)

P ′ = P [x 7→ {⊥}] Q′ = Q ∪ {o.f | 〈y, o〉 ∈ P}
m,P, U,Q ` x = y.f ⇒ P ′, U,Q′

(STORE)

Wm ⊇ {α.f |α ∈ A ∧ 〈x, α〉 ∈ P} U ′ = U ∪ {o| 〈y, o〉 ∈ P}
(∃o)(〈x, o〉 ∈ P ∧ o ∈ U)→

(
f ∈ S̄

)
(∃o)(o.f ∈ Q ∧ 〈y, o〉 ∈ P )→

(
f ∈ S̄

)
Cm ⊇ {〈αi, αj, f〉 |i 6= j ∧ αi ∈ A ∧ αi.f ∈ Q ∧ 〈y, αj〉 ∈ P}

m,P, U,Q ` x.f = y ⇒ P,U ′, Q

(SEQ)

m,P, U,Q ` s1 ⇒ P ′, U ′, Q′ m,P ′, U ′, Q′ ` s2 ⇒ P ′′, U ′′, Q′′

m,P, U,Q ` s1; s2 ⇒ P ′′, U ′′, Q′′

(IF)

m,P, U,Q ` s1 ⇒ P1, U1, Q1

m,P, U,Q ` s2 ⇒ P2, U2, Q2 U ′ = U1 ∪ U2 P ′ = P1 ∪ P2 Q′ = Q1 ∪Q2

m,P, U,Q ` if ∼ then s1 else s2 ⇒ P ′, U ′, Q′

(WHILE)

m,P ′, U ′, Q′ ` s⇒ P ′, U ′, Q′ P ′ ⊇ P U ′ ⊇ U Q′ ⊇ Q

m,P, U,Q ` while ∼ do s⇒ P ′, U ′, Q′

Figure 2.2: Inference rules for finding nonstationary fields S̄.



CHAPTER 2. STATIONARY FIELDS 17

(METHOD)

Rm ⊇ {o| 〈y, o〉 ∈ P ′ ∧ o ∈ A}
(∃o)(〈y, o〉 ∈ U ′)→ (⊥ ∈ Rm) Lm = {α|α ∈ U ′ ∧ α ∈ A}

Dm = {f |(∃o)(o.f ∈ Q′ ∧ 〈y, o〉 ∈ P ′)} Em = {α.f |α ∈ A ∧ α.f ∈ Q′}
P = {〈x1, α1〉 , . . . , 〈xi, αi〉} U = {⊥} Q = ∅ m,P, U,Q ` s⇒ P ′, U ′, Q′

` m(x1, . . . , xi){s; return y}
(INVOKE)

ai.f ∈ Wn ∧ (∃o)(〈yi, o〉 ∈ P ∧ o ∈ U ′))→
(
f ∈ S̄

)
Wm ⊇ {ai.f |ai ∈ A ∧ (∃j)(aj.f ∈ Wn ∧ 〈yj, ai〉 ∈ P}

P ′ = P [x 7→ B] B ⊇ (∃i)(αi ∈ Rn ∧ 〈yi, o〉 ∈ P )} β ∈ B
β fresh ⊥ ∈ Rn → ⊥ ∈ B U ′ = U ∪ {o|(∃i)(αa ∈ Ln ∧ 〈yi, o〉 ∈ P )}
Q′ ⊇ Q Q′ ⊇ {β.f |f ∈ Dn} Q′ ⊇ {o.f |(∃i)(αi.f ∈ En ∧ 〈yi, o〉 ∈ P}

(∃i, j, o)(〈αi, αj, f〉 ∈ Cn

∧ 〈yi, o〉 ∈ P ∧ 〈yj, o〉 ∈ P )→
(
f ∈ S̄

)
Cm ⊇ {〈αi, αj, f〉 |i 6= j ∧ αi.f ∈ Q∧

(∃k)(αk.f ∈ Wn ∧ 〈yk, αj〉 ∈ P )}
Cm ⊇ {〈αi, αj, f〉 |i 6= j

∧(∃k, l)(〈αk, αl, f〉 ∈ Cn

∧ 〈yk, αi〉 ∈ P ∧ 〈yl, αj〉 ∈ P )}
` n(z1, z2, . . . ){. . . }

m,P, U,Q ` x = n(y1, y2, . . . )⇒ P ′, U ′, Q′

Figure 2.3: Inference rules for finding nonstationary fields S̄.



CHAPTER 2. STATIONARY FIELDS 18

P [x 7→ B] ≡ {〈y, o〉 | 〈y, o〉 ∈ P ∧ x 6= y} ∪ {〈x, o〉 |o ∈ B}

This notation is used to discard the current contents of a variable and insert new

ones, that is, to destructively update the points-to set of a variable.

The inference rules relate the points-to relations, lost objects, and reads prior to

a statement to those after it. For example, rule LOAD, which reads:

P ′ = P [x 7→ {⊥}] Q′ = Q ∪ {o.f | 〈y, o〉 ∈ P}

m,P, U,Q ` x = y.f ⇒ P ′, U,Q′

says that x = y.f , when executed within method m with prior points-to relations P ,

untracked objects U , and prior reads Q, results in points-to relations P ′, unchanged

untracked objects, and prior reads Q′; P ′ is P modified such that x points only to ⊥;

and Q′ is the union of Q′ with o.f for every object to which y may point.

Analysis proceeds from a main function: our final conclusion is ` main(x1, . . . ){. . . }.
The inference rules provide the following:

• Following an allocation x = new(), x points to a fresh object that represents all

objects created by any execution of that allocation statement (NEW).

• Following an assignment x = y, x points to all objects that y pointed to; nothing

is lost or read (ASSIGN).

• After a load x = y.f , x points to the lost object ⊥, which is used in place of

all objects that are fetched from the heap. Field f has been read on all objects

that y may point to (LOAD).

• After a store x.f = y, objects pointed to by y are lost. If x pointed to any lost

object, then f is nonstationary. If x points to an object passed as a parameter

of m, then m writes field f of that parameter. If the store overwrites a previous

read, the field is nonstationary. If the store is to a parameter, and the same field

of some other parameter has previously been read, the store will overwrite the

read if the two parameters alias; record this alias condition so that the caller

may check it (STORE).



CHAPTER 2. STATIONARY FIELDS 19

• In a sequence of statements, s1; s2, the points-to relations after s1 are those

before s2; likewise for the lost objects and previous reads (SEQ).

• Anything that may be lost after either branch of an if . . . then . . . else . . . statement

is lost after the statement; any points-to relation possible after either branch is

possible after the statement; likewise with prior reads (IF).

• The points-to set, lost objects, and prior reads at the exit of a loop must be

a fixed point under the body of the loop, and the fixed point must include

all points-to relations, lost objects, and prior reads at the entry of the loop

(WHILE).

• All substatements of compound statements execute within the same method as

the compound statement (SEQ, IF, WHILE).

• The statements inside a method definition are executed in the context of that

method; when they begin only ⊥ is lost, no fields have been read, and each for-

mal parameter points to the corresponding placeholder object. Any parameter

object that is lost at the end of the method is lost by the method. If a param-

eter object is pointed to by the return variable at the end of the method, the

function returns that parameter. Any parameter field that has been read at the

end of the method is lost by the method. Likewise, if a field of some object has

been read, and that object is pointed to by the return variable, then that field

has been read from the object returned by the method. If the return variable

points to any lost object, the function also returns the lost object (METHOD).

• Rule INVOKE is the most complicated, as invoking a function has effects

equivalent to some set of loads, stores, assignments, and allocations. Let

x = n(y1, . . . ) be the invocation. If actual parameter i may refer to an ob-

ject that is lost after the invocation, and n writes f of its ith argument, then f

is assumed to be nonstationary, because the write in n is to a lost object. This

condition refers to the lost objects after the invocation because the summary

for a method contains no information on the relative ordering of the writes and

objects lost. The rule must conservatively assume that some objects are lost,



CHAPTER 2. STATIONARY FIELDS 20

and then the writes occur. If the called function n writes its ith argument,

and the ith actual parameter may point to parameter j of the calling method

m, then the calling method writes field f of argument j; writes are propagated

outward. The properties of invocations just given are parallel to those for stores.

Likewise, the fields written by the callee may overwrite previous reads, or imply

that a field will be overwritten if two parameters of the caller alias, just as for

a store.

After the invocation, x points to anything n may have returned. If n may return

parameter i, x may point to anything parameter i pointed to; x may also point

to ⊥ if n returns that.

It is also assumed that any function may return some newly created, not lost

object, so x points to a fresh placeholder object just as with an allocation. In

this fashion, we keep the object names for allocation sites and call sites internal

to a method. The effect is to substitute the caller’s call-site name for the callee’s

internal name.

If n loses parameter i, then anything pointed to by the argument i is lost after

the invocation of n.

Any fields of the returned object that were read by the callee have been read

on the placeholder return object. If n reads fields from a parameter, then those

fields have been read on any object pointed to by the corresponding argument.

2.3.5 Solution Procedure

We seek the least solution consistent with the rules given above: we wish S̄ as to be

small as possible, and likewise for all the sets that comprise the method summaries,

and P , U , and Q for each statement.

The algorithm is efficient because the side effects of each method are represented

in terms of its parameters, so no information needs to flow from the caller to the callee.

Furthermore, each method can only refer to the placeholder objects representing the

input parameters and the newly created objects returned by its callees. All indirect

references are modeled simply as the lost object ⊥.



CHAPTER 2. STATIONARY FIELDS 21

procedure findStationaryFields(main):
callgraph = computeCHACallgraph(main)
S̄ := ∅
for each method m ∈ callgraph:

Wm := ∅;Lm := ∅;Rm := ∅
Cm := ∅;Dm := ∅;Em := ∅

for each scc ∈ topologicalSort(findSCCs(callgraph))
repeat

for each method m ∈ scc:
summarizeMethod(m)

until Wm, Rm, Lm, Cm, Dm, Em

stabilize for all m ∈ scc

procedure summarizeMethod(m):
for each p ∈ programPoints(m):

Up := ∅;Pp := ∅; Qp := ∅
visitRule(methodRule(m))
repeat

for each s ∈ statements(m):
visitRule(statementRule(s))

until Up, Pp, Qp stabilize for all p ∈ programPoints(m)
visitRule(methodRule(m))

procedure visitRule(r):
add minimum items to sets referenced by r so that r holds

Figure 2.4: Pseudocode for our algorithm for identifying stationary fields.



CHAPTER 2. STATIONARY FIELDS 22

Figure 2.4 shows the pseudocode for our algorithm. The procedure is as follows:

1. Compute a call graph for the input program rooted at the entry function using

CHA.

2. Begin by initializing sets we aim to compute to the empty set: we have found

no fields that are written lost, and we have not discovered the side effects of

any method.

3. Find strongly-connected components within the call graph and sort them in

topological order.

4. Summarize all methods within each SCC, starting with leaf SCCs, and ending

with the SCC containing main.

5. Nontrivial strongly connected components contain recursive cycles; the sum-

maries methods within these SCCs depend on each other. Within such an

SCC, iterate until a fixed point is reached for the summaries of all methods it

contains.

The procedure to summarize a method m is:

1. Maintain a value for P , U , and Q at each program point; initialize these to the

empty set.

2. Set P , U , and Q prior to the first statement in the method in accordance with

the METHOD rule.

3. Iterate over all statements in m until a fixed point for P and U at all points is

reached.

4. When visiting each statement, add the minimum items to P , U , and Q following

the statement to satisfy the appropriate rule. (Also add items to the summary

for m in Lm, or note the discovery of a lost write in S̄, when appropriate.)

5. Update the summary for m in accordance with the METHOD rule.



CHAPTER 2. STATIONARY FIELDS 23

The above procedure constitutes a particular order for visiting the inference rules.

We could of course iterate over them in any order until they converge. By using this

order, we may recompute the P , U , and Q for the program points inside a method

each time we visit it. This reduces the space required for the algorithm, by eliminating

the need to store this information for every program point simultaneously.

Our implementation incorporates an important optimization: once a field f is

assumed not to be stationary (known to be contained in S̄), our implementation

ignores side effects with respect to f inW , C, D, and E for every method. Information

about such side effects has no further use; suppressing their storage keeps the method

summaries small.



Chapter 3

Study of Programs

In this section, we present results of applying our algorithms to infer final and sta-

tionary fields in real-world Java programs.

3.1 Methodology

We applied our algorithms to a selection of real-world programs in order to gauge its

effectiveness and discover the prevalence of stationary fields.

We implemented our analysis using the Joeq compiler infrastructure [42]. Experi-

ments were conducted on an Opteron 150 (2.4 GHz) with Sun JDK 1.5.0 03 running

on CentOS 4.

We selected a group of benchmarks from the most-downloaded Java programs

on Sourceforge, selecting only those that would compile as standalone programs.

(The version we use in each case is what was at the latest revision in the source

code repository as of 15 November 2003.) These are all real-world programs with

thousands of users. In addition, we include the SPEC JVM98 benchmarks because

they come with input sets and thus make dynamic analysis possible. We exclude the

JVM testsuite program check from the SPEC JVM98 benchmarks.

Figure 3.1 lists the programs we used as benchmarks, along with a description,

statistics about their size, and the run time of our analysis. The figure gives the

number of classes in the call graph for each program; the number of methods defined

24



CHAPTER 3. STUDY OF PROGRAMS 25

m
et

h
o
d

s
in

an
al

y
si

s
p

ro
je

ct
d

es
cr

ip
ti

on
cl

as
se

s
m

et
h

o
d

s
ca

ll
gr

ap
h

ti
m

e
(m

)
az

ur
eu

s
bi

tt
or

re
nt

cl
ie

nt
17

10
16

24
3

11
57

6
5

co
lu

m
ba

gr
ap

hi
ca

l
em

ai
l

cl
ie

nt
44

47
37

40
0

30
49

4
25

fin
db

ug
s

fin
d

bu
gs

in
Ja

va
pr

og
ra

m
s

19
29

16
80

4
11

51
1

6
fr

ee
tt

s
sp

ee
ch

sy
nt

he
si

s
sy

st
em

36
14

32
29

1
25

55
1

18
gr

un
ts

pu
d

gr
ap

hi
ca

l
C

V
S

cl
ie

nt
44

79
37

25
8

31
24

5
28

jb
id

w
at

ch
er

au
ct

io
n

si
te

tr
ac

ki
ng

to
ol

38
16

33
71

4
27

37
5

24
jb

os
s

j2
ee

ap
pl

ic
at

io
n

se
rv

er
36

87
33

04
5

26
05

2
20

je
di

t
pr

og
ra

m
m

er
’s

te
xt

ed
it

or
41

82
35

85
6

30
28

0
29

je
tt

y
H

T
T

P
se

rv
er

an
d

se
rv

le
t

co
nt

ai
ne

r
14

50
13

00
1

91
71

4
jg

ra
ph

gr
ap

h
ob

je
ct

s
an

d
al

go
ri

th
m

s
36

53
33

09
0

26
32

2
23

jo
on

e
ne

ur
al

ne
t

fr
am

ew
or

k
36

46
32

93
7

25
91

4
21

jx
pl

or
er

L
D

A
P

br
ow

se
r

40
53

35
45

9
29

08
7

33
l2

j
ga

m
e

se
rv

er
16

01
14

17
0

10
00

8
4

m
eg

am
ek

ne
tw

or
ke

d
B

at
tl

et
ec

h
ga

m
e

39
83

36
13

0
30

10
5

29
nf

cc
ha

t
di

st
ri

bu
te

d
ch

at
cl

ie
nt

36
10

32
34

9
25

56
5

19
op

en
w

fe
w

or
kfl

ow
en

gi
ne

36
69

33
04

8
25

93
7

19
pm

d
Ja

va
pr

og
ra

m
an

al
yz

er
15

99
13

68
0

10
22

8
4

sp
ec

/c
om

pr
es

s
m

od
ifi

ed
L

ev
-Z

im
pe

l
co

m
pr

es
si

on
36

13
32

31
4

25
60

8
19

sp
ec

/d
b

in
-m

em
or

y
da

ta
ba

se
36

05
32

32
1

25
61

3
19

sp
ec

/j
ac

k
pa

rs
er

ge
ne

ra
to

r
36

54
32

40
5

25
86

5
19

sp
ec

/j
av

ac
Ja

va
co

m
pi

le
r

37
69

33
25

6
26

71
8

21
sp

ec
/j

es
s

ex
pe

rt
sh

el
l

sy
st

em
37

49
32

77
2

26
17

0
19

sp
ec

/m
pe

ga
ud

io
de

co
m

pr
es

s
M

P
3

au
di

o
36

45
32

50
8

25
82

3
19

sp
ec

/m
tr

t
ra

y
tr

ac
er

36
27

32
40

6
25

73
4

19
ss

ht
oo

ls
ss

h
te

rm
in

al
38

30
33

82
7

26
80

9
23

um
ld

ot
m

ak
e

U
M

L
cl

as
s

di
ag

ra
m

s
fr

om
Ja

va
co

de
36

72
32

54
2

26
12

3
23

F
ig

u
re

3.
1:

B
en

ch
m

ar
k

p
ro

gr
am

s
u
se

d
in

ou
r

ex
p

er
im

en
ts

.



CHAPTER 3. STUDY OF PROGRAMS 26

to
ta

l
%

st
at

io
n

ar
y

%
n

on
st

at
io

n
ar

y
%

%
p

ro
je

ct
fi

el
d

s
fi

n
al

u
f

cg
f

n
f

to
ta

l
fi

n
al

u
f

cg
f

n
f

to
ta

l
fi

n
al

st
a.

az
ur

eu
s

16
01

15
16

2
17

50
1

4
0

44
50

17
50

co
lu

m
ba

45
41

10
17

3
17

46
1

7
0

45
54

11
46

fin
db

ug
s

15
48

12
21

6
20

58
1

3
0

38
42

13
58

fr
ee

tt
s

32
89

12
17

5
17

51
1

3
0

44
49

13
51

gr
un

ts
pu

d
49

28
13

14
3

14
45

2
8

0
46

55
15

45
jb

id
w

at
ch

er
36

01
11

17
3

16
48

1
4

0
47

52
12

48
jb

os
s

33
77

12
17

5
17

51
1

3
0

44
49

13
51

je
di

t
45

11
13

16
3

14
46

1
7

0
45

54
15

46
je

tt
y

10
87

14
18

2
21

56
1

3
0

40
44

15
56

jg
ra

ph
34

83
12

17
4

17
50

1
3

0
46

50
13

50
jo

on
e

33
68

11
17

5
17

50
1

3
0

45
50

13
50

jx
pl

or
er

43
34

13
14

3
15

45
1

7
0

46
55

14
45

l2
j

12
19

12
23

3
21

59
2

3
0

36
41

14
59

m
eg

am
ek

46
79

9
15

3
16

44
1

11
0

44
56

11
44

nf
cc

ha
t

33
00

12
18

5
17

51
1

3
0

44
49

13
51

op
en

w
fe

33
75

12
18

5
17

51
1

3
0

44
49

13
51

pm
d

11
60

14
19

2
22

57
1

3
0

39
43

14
57

sp
ec

/c
om

pr
es

s
32

90
12

17
4

17
51

1
3

0
45

49
13

51
sp

ec
/d

b
32

80
12

17
4

17
51

1
3

0
45

49
13

51
sp

ec
/j

ac
k

33
36

12
17

4
17

51
1

3
0

44
49

13
51

sp
ec

/j
av

ac
34

55
11

18
4

16
50

1
3

0
45

50
12

50
sp

ec
/j

es
s

33
47

12
18

4
17

51
1

3
0

44
49

13
51

sp
ec

/m
pe

ga
ud

io
33

68
11

18
4

17
51

1
3

0
44

49
13

51
sp

ec
/m

tr
t

33
14

12
18

4
17

51
1

3
0

45
49

13
51

ss
ht

oo
ls

36
16

11
17

4
20

53
1

3
0

43
47

12
53

um
ld

ot
34

92
12

16
4

17
49

2
3

0
46

51
14

49

F
ig

u
re

3.
2:

P
er

ce
n
ta

ge
s

of
re

fe
re

n
ce

-t
y
p

ed
fi
el

d
s

b
y

st
at

io
n
ar

y
an

d
fi
n
al

st
at

u
s,

ex
cl

u
d
in

g
p
ac

ka
ge

s
s
u
n
.
*
.

A
ll

p
er

ce
n
ta

ge
s

ar
e

of
to

ta
l

fi
el

d
s.

(fi
n
a
l:

d
ec

la
re

d
fi
n
al

;
u
f:

u
n
d
ec

la
re

d
fi
n
al

;
cg

f:
fi
n
al

in
p
ro

gr
am

’s
ca

ll
gr

ap
h
;

n
f:

ca
n
n
ot

b
e

in
fe

rr
ed

fi
n
al

;
se

e
S
ec

ti
on

3.
2

fo
r

d
efi

n
it

io
n
s.

)



CHAPTER 3. STUDY OF PROGRAMS 27

to
ta

l
%

st
at

io
n

ar
y

%
n

on
st

at
io

n
ar

y
%

%
p

ro
je

ct
fi

el
d

s
fi

n
al

u
f

cg
f

n
f

to
ta

l
fi

n
al

u
f

cg
f

n
f

to
ta

l
fi

n
al

st
a.

az
ur

eu
s

53
3

18
13

1
7

40
1

7
0

52
60

20
40

co
lu

m
ba

13
13

6
18

2
14

41
1

14
1

44
59

7
41

fin
db

ug
s

48
7

7
29

14
18

67
1

3
0

29
33

8
67

fr
ee

tt
s

18
6

4
22

6
15

47
1

1
0

51
53

5
47

gr
un

ts
pu

d
16

92
16

9
1

9
36

2
16

0
45

64
19

36
jb

id
w

at
ch

er
49

9
4

16
3

10
33

1
10

0
56

67
5

33
jb

os
s

26
8

9
24

8
16

57
2

1
0

41
43

11
57

je
di

t
14

01
16

15
1

7
39

1
15

0
44

61
18

39
je

tt
y

43
7

37
0

21
65

0
5

0
30

35
7

65
jg

ra
ph

40
0

7
18

4
12

42
0

3
0

55
58

8
42

jo
on

e
28

9
3

17
11

13
45

1
3

0
51

55
4

45
jx

pl
or

er
11

00
14

7
1

8
30

1
20

0
49

70
16

30
l2

j
15

7
2

60
8

17
87

0
3

0
10

13
2

87
m

eg
am

ek
15

86
4

13
1

14
31

1
26

0
42

69
5

31
nf

cc
ha

t
22

1
4

28
7

13
52

1
1

0
46

48
5

52
op

en
w

fe
28

6
4

22
10

14
50

1
3

0
45

50
5

50
pm

d
11

6
6

33
1

25
65

0
8

0
28

35
6

65
sp

ec
/c

om
pr

es
s

21
0

4
23

6
14

47
1

3
0

49
53

5
47

sp
ec

/d
b

20
0

4
24

6
14

48
1

2
0

50
52

5
48

sp
ec

/j
ac

k
25

6
3

23
5

18
50

1
4

0
46

50
4

50
sp

ec
/j

av
ac

37
5

2
23

3
10

39
1

5
2

53
61

3
39

sp
ec

/j
es

s
26

6
3

24
5

16
47

1
6

0
45

53
4

47
sp

ec
/m

pe
ga

ud
io

28
8

3
32

5
17

56
1

2
0

41
44

3
56

sp
ec

/m
tr

t
23

4
3

24
5

15
48

1
3

0
48

52
4

48
ss

ht
oo

ls
52

9
4

23
7

33
67

0
2

0
31

33
4

67
um

ld
ot

40
2

14
11

3
9

37
4

2
0

57
63

18
37

F
ig

u
re

3.
3:

P
er

ce
n
ta

ge
s

of
re

fe
re

n
ce

-t
y
p

ed
fi
el

d
s

b
y

st
at

io
n
ar

y
an

d
fi
n
al

st
at

u
s,

ex
cl

u
d
in

g
p
ac

ka
ge

s
j
a
v
a
.
*
,
j
a
v
a
x
.
*
,

an
d
s
u
n
.
*
.

A
ll

p
er

ce
n
ta

ge
s

ar
e

of
to

ta
l

fi
el

d
s.

(fi
n
a
l:

d
ec

la
re

d
fi
n
al

;
u
f:

u
n
d
ec

la
re

d
fi
n
al

;
cg

f:
fi
n
al

in
p
ro

gr
am

’s
ca

ll
gr

ap
h
;

n
f:

ca
n
n
ot

b
e

in
fe

rr
ed

fi
n
al

;
se

e
S
ec

ti
on

3.
2

fo
r

d
efi

n
it

io
n
s.

)



CHAPTER 3. STUDY OF PROGRAMS 28

to
ta

l
%

st
at

io
n

ar
y

%
n

on
st

at
io

n
ar

y
%

%
p

ro
je

ct
fi

el
d

s
fi

n
al

u
f

cg
f

n
f

to
ta

l
fi

n
al

u
f

cg
f

n
f

to
ta

l
fi

n
al

st
a.

az
ur

eu
s

10
99

6
10

3
24

42
1

2
0

54
58

6
42

co
lu

m
ba

24
09

3
11

5
15

34
0

2
0

64
66

3
34

fin
db

ug
s

80
3

6
11

8
19

45
1

2
0

52
55

7
45

fr
ee

tt
s

20
72

3
12

7
15

37
0

2
1

60
63

3
37

gr
un

ts
pu

d
24

37
3

11
4

17
35

0
2

1
62

65
3

35
jb

id
w

at
ch

er
22

38
3

12
5

16
36

0
2

0
62

64
3

36
jb

os
s

20
95

3
12

7
16

37
0

2
1

60
63

3
37

je
di

t
25

86
3

11
4

14
32

0
2

0
65

68
3

32
je

tt
y

61
5

9
11

4
17

41
1

2
0

56
59

10
41

jg
ra

ph
21

40
3

12
6

15
36

0
1

1
62

64
3

36
jo

on
e

21
26

3
12

7
15

37
0

2
1

60
63

3
37

jx
pl

or
er

22
51

3
11

4
16

34
0

2
0

64
66

3
34

l2
j

89
1

6
20

11
17

55
1

1
0

43
45

7
55

m
eg

am
ek

26
62

2
10

5
15

32
0

2
1

65
68

3
32

nf
cc

ha
t

20
72

3
12

7
15

37
0

2
1

60
63

3
37

op
en

w
fe

20
98

3
12

7
15

37
0

2
1

60
63

3
37

pm
d

66
5

8
11

4
18

42
1

2
0

55
58

9
42

sp
ec

/c
om

pr
es

s
20

98
3

12
7

15
37

0
2

1
61

63
3

37
sp

ec
/d

b
20

82
3

12
7

15
37

0
2

1
61

63
3

37
sp

ec
/j

ac
k

21
30

3
12

7
15

37
0

2
1

61
63

3
37

sp
ec

/j
av

ac
21

54
3

12
7

15
36

0
2

1
61

64
3

36
sp

ec
/j

es
s

21
91

3
14

6
15

39
0

2
1

59
61

3
39

sp
ec

/m
pe

ga
ud

io
21

44
3

12
7

15
36

0
1

1
62

64
3

36
sp

ec
/m

tr
t

21
16

3
12

7
15

37
0

2
1

61
63

3
37

ss
ht

oo
ls

21
73

3
12

6
16

37
0

1
1

61
63

3
37

um
ld

ot
20

88
3

12
6

16
36

0
2

1
62

64
3

36

F
ig

u
re

3.
4:

P
er

ce
n
ta

ge
s

of
p
ri

m
it

iv
e-

ty
p

ed
fi
el

d
s

b
y

st
at

io
n
ar

y
an

d
fi
n
al

st
at

u
s,

ex
cl

u
d
in

g
p
ac

ka
ge

s
s
u
n
.
*
.

A
ll

p
er

ce
n
ta

ge
s

ar
e

of
to

ta
l

fi
el

d
s.

(fi
n
a
l:

d
ec

la
re

d
fi
n
al

;
u
f:

u
n
d
ec

la
re

d
fi
n
al

;
cg

f:
fi
n
al

in
p
ro

gr
am

’s
ca

ll
gr

ap
h
;

n
f:

ca
n
n
ot

b
e

in
fe

rr
ed

fi
n
al

;
se

e
S
ec

ti
on

3.
2

fo
r

d
efi

n
it

io
n
s.

)



CHAPTER 3. STUDY OF PROGRAMS 29

by those classes; and the number of methods actually included in the call graph

for the program. These numbers include library methods and classes. Many of

these are sizeable programs. Gruntspud, the largest, uses over four thousand classes,

approximately half of which are in the application itself rather than the Java libraries.

The number of methods in the call graph is typically about two-thirds of those

defined by the included classes. This indicates that many applications that use classes,

especially from libraries, use only a portion of the functionality that those classes offer.

The benchmarks’ call graphs fall into two categories: less than 12,000 methods, or

more than 25,000 methods. This is because the call graph for the Java libraries

includes some very large strongly connected components. The smaller call graphs

exclude one of these very large components.

The presence of this large component has a strong effect on the analysis time.

Those applications that do not include it are completed in under five minutes; those

that do include it generally take approximately twenty minutes to half an hour. The

algorithm must iterate over all the methods in each SCC until a fixed point is reached

for their summaries; in these cases one SCC includes nearly half the program. Even on

the largest programs, analysis is complete in under two hours, an acceptable amount

of time for yielding whole-program information. Our implementation is not highly

optimized. It would be possible to apply techniques such as precomputation of results

for the system library to minimize the run time.

3.2 Static Analysis of Stationary and Final Fields

Figures 3.2, 3.3, and 3.4 show the results of applying our algorithm to our bench-

marks. Fields are classified either stationary or nonstationary. Only instance fields

from which the methods in the call graph include at least one load are included.

Figures 3.2 and 3.4 include all packages except sun.*, which contains primarily

JVM internals, for fields of reference and primitive type respectively. The results

for reference-typed fields in Figure 3.3 also exclude the core Java libraries in pack-

ages java.* and javax.* and should generally represent the application itself and its

libraries.



CHAPTER 3. STUDY OF PROGRAMS 30

azureus

colum
ba

findbugs

freetts

gruntspud

jbidwatcher

jboss
jedit

jetty
jgraph

joone

jxplorer

l2j
m

egam
ek

nfcchat

openwfe

pm
d

sshtools

um
ldot

0

20

40

60

80

100

%
 o

f 
fi
e
ld

s

com
press

jess
db javac

m
pegaudio

m
trt

jack

0

20

40

60

80

100

%
 o

f 
fi
e
ld

s

Stationary Fields (Reference-type)

stationary
final

Figure 3.5: Stationary fields found by our inference algorithm: reference-typed fields,
application only



CHAPTER 3. STUDY OF PROGRAMS 31

azureus

colum
ba

findbugs

freetts

gruntspud

jbidwatcher

jboss
jedit

jetty
jgraph

joone

jxplorer

l2j
m

egam
ek

nfcchat

openwfe

pm
d

sshtools

um
ldot

0

20

40

60

80

100

%
 o

f 
fi
e
ld

s

com
press

jess
db javac

m
pegaudio

m
trt

jack

0

20

40

60

80

100

%
 o

f 
fi
e
ld

s

Stationary Fields (Primitive-type)

stationary
final

Figure 3.6: Stationary fields found by our inference algorithm: primitive-typed fields



CHAPTER 3. STUDY OF PROGRAMS 32

azureus

colum
ba

findbugs

freetts

gruntspud

jbidwatcher

jboss
jedit

jetty
jgraph

joone

jxplorer

l2j
m

egam
ek

nfcchat

openwfe

pm
d

sshtools

um
ldot

0

20

40

60

80

100

%
 o

f 
fi
e
ld

s

com
press

jess
db javac

m
pegaudio

m
trt

jack

0

20

40

60

80

100

%
 o

f 
fi
e
ld

s

Stationary Fields (Reference-type, Application Only)

stationary
final

Figure 3.7: Stationary fields found by our inference algorithm: reference-typed fields,
application only



CHAPTER 3. STUDY OF PROGRAMS 33

azureus

colum
ba

findbugs

freetts

gruntspud

jbidwatcher

jboss
jedit

jetty
jgraph

joone

jxplorer

l2j
m

egam
ek

nfcchat

openwfe

pm
d

sshtools

um
ldot

0

20

40

60

80

100

%
 o

f 
fi
e
ld

s

com
press

jess
db javac

m
pegaudio

m
trt

jack

0

20

40

60

80

100

%
 o

f 
fi
e
ld

s

Stationary Fields (Primitive-type, Application Only)

stationary
final

Figure 3.8: Stationary fields found by our inference algorithm: primitive-typed fields,
application only



CHAPTER 3. STUDY OF PROGRAMS 34

The results show that stationary fields are prevalent in Java programs: for reference-

typed fields, the stationary percentage ranges from 44 to 59 in the programs, when

the Java libraries are included. Even when the Java libraries are excluded, more than

30% of fields are stationary in every application. In application portion of some of

the smaller programs, more than 60% of the fields are stationary. For fields that hold

primitive types, stationary fields are modestly less common, but are still more than

30% in all the benchmarks.

It is surprising that about half of all the fields in each of these Java programs

program are stationary. This suggests that significant portions of Java programs are

“functional” in nature, where data are initialized and not changed later. Obviously,

garbage collection plays an important role in encouraging this style of programming.

Comparing Stationary with Final Fields

We also analyzed all the fields of the programs to determine if they were or could be

declared final, using the algorithm given in Section 2.2.2. In the figures, fields are

classified as one of:

• declared as final;

• undeclared final (uf), fields that are not declared final but for which such a

declaration would be legal considering all the code contained in each program

and its libraries;

• call-graph final (cgf), fields that are not final or undeclared final, but that could

legally be declared final when considering only the code within the call graph

we used for each program; or

• not final (nf).

There are many fewer declared final fields than stationary fields: less than 20%

of the fields are declared final in both the full programs as well as just the application

codes. The results suggest that automatic inference of final fields is useful, as many

fields are used like they are final but are not declared as such.



CHAPTER 3. STUDY OF PROGRAMS 35

Nonetheless, almost 20% of the fields in full programs are found to be station-

ary yet cannot be inferred to be final. This means that the relaxed definition of

initialization of stationary fields is significant.

3.2.1 Stationary Nonfinal Fields

The table in Figure 3.9 quantifies the reasons why stationary is more applicable than

final. The three main reasons are fields that are:

• uninitialized, potentially uninitialized at the end of a constructor;

• multiply initialized, potentially multiply initialized within the constructor;

or

• outside constructor, assigned outside the constructor of the class defining

that field.

Notice that fields can belong to more than one category, so the columns sum to

more than 100%. The results show that potential lack of initialization is the most

common reason that fields cannot be declared final, appearing for a majority of fields.

Assignment outside the constructor is next most common, occurring for around half

of fields. Multiple assignment in the constructor is not common, but does occur in a

handful of places in all programs.

In every program, the number of uninitialized fields is strictly greater than the

number of fields assigned outside the constructor. This might be surprising; after

all, if we don’t assign the field inside the constructor, we would certainly expect an

assignment somewhere else. Bear in mind, however, that this result only reports that

a field is potentially unassigned. Constructors may leave fields unassigned on some

path, allowing them to retain their default null value. Also, it is possible for some

constructors of a class to initialize a field while others do not.

3.2.2 Inferred Final Fields

Our results show that many programs seem to be missing opportunities to declare

fields to be final—even including the Java libraries, fewer than half the fields that



CHAPTER 3. STUDY OF PROGRAMS 36

init. mult.
project uninit. outside ctor. init.
azureus 88 42 3
columba 90 32 5
findbugs 87 46 3
freetts 90 33 5
gruntspud 92 36 5
jbidwatcher 90 33 6
jboss 90 33 6
jedit 92 31 5
jetty 87 42 3
jgraph 91 32 6
joone 91 33 5
jxplorer 90 33 6
l2j 88 43 3
megamek 89 34 6
nfcchat 90 32 5
openwfe 90 32 5
pmd 89 43 2
spec/compress 90 33 5
spec/db 90 33 5
spec/jack 90 34 5
spec/javac 90 33 5
spec/jess 90 33 5
spec/mpegaudio 90 32 5
spec/mtrt 90 33 5
sshtools 76 43 5
umldot 90 32 6

Figure 3.9: Reasons why stationary fields cannot be declared final. Percentages of
stationary, non-final, reference-typed fields.



CHAPTER 3. STUDY OF PROGRAMS 37

could be marked final are.

There are several reasons why there are so many undeclared final fields. First,

our analysis only considers classes that are used by the program; there may be other

classes inside these libraries that mutate these fields. Second, there may be public

fields for which legitimate client code could modify them. Third, the declaration of

final could simply be missing.

When we look at final in the application code itself, the percentage of declared

final fields is even lower. Indeed, some applications, such as l2j, do not declare any

fields to be final! (The 3 final fields reported for l2j are not within the application

itself, but rather within the com.sun.management package.) This is probably because

there is no feedback from the compiler when a final declaration is missing, as it is

compiling only a single class at a time. However, many of these fields are private, so

the fields could not be modified outside the translation units. Java compilers might

consider emitting a warning when a private field could be declared final but is not, in

the same vein that some emit warnings for private fields that are never read within

the body of the defining class.

The number of callgraph final fields suggests that many library methods that

mutate some fields are unused by applications. That is, even though a library defines

an object as mutable, an application treats it as fixed. It could also represent object

configuration parameters that applications tend to leave in the default settings. The

presence of call-graph-final fields outside of the Java libraries indicates some dead

code within applications, but also that applications are using only portions of the

(non-Java core) libraries that they are packaged with.

3.2.3 Nonstationary Final Fields

In general, we would expect most final fields to be stationary as well. However, there

are a number of nonstationary fields reported in the final, undeclared final, and call-

graph final categories, primarily undeclared final. First, there is a category of fields

that are final but that cannot be shown stationary by our analysis. It is possible

for a constructor to create a reference to this in another object, or to pass this as



CHAPTER 3. STUDY OF PROGRAMS 38

an argument to a function that does so. Any field initialized after that point in the

constructor is nonstationary. In our experience, a common reason is the creation

of a object of non-static inner class during construction. The inner class contains a

reference to its outer class, and so the outer class is necessarily lost. For example,

classes in the Java SWING library often create an inner class to use as an event

handler. This implies that no field in a class derived from these classes is found to be

stationary, because base class constructors execute before derived class constructors.

The programs with significant numbers of nonstationary, undeclared final fields are

all GUI programs.

Second, because our algorithm is conservative, it is also possible for an impreci-

sion within it to report a stationary field as nonstationary, even if no lost writes or

overwritten reads are in fact possible. The primary cause of this is the lack of relative

ordering information between what is written and what is lost in the summaries of

methods.

3.2.4 Semi-Stationary Fields

Stationary fields are defined such that they are read only after all the writes have

been performed. Sometimes, a field may need to be read as part of the initialization.

For example, a program may choose to write to a field only if it has not previously

been assigned. This would require that the field be read first to check for nullness

before the write operation. Such an action would render the field nonstationary by

our definition.

Even though reads during initialization may access fields before they stabilize, our

algorithm can identify the reaching definitions for such reads accurately as long as

the objects accessed have not been lost. Thus, we refer to a field as semi-stationary

if all the reads of a field of an object either occur before the object is lost, or after all

the writes to the field have taken place. Semi-stationary fields are interesting because

precise alias information is available for all their writes, and definitions reaching the

read accesses are well identified.

Figure 3.10 compares the fraction of fields that are stationary and semi-stationary.



CHAPTER 3. STUDY OF PROGRAMS 39

all fields application only
project sta. semi-sta. sta. semi-sta.
azureus 50 52 40 40
columba 46 48 41 42
findbugs 58 61 67 69
freetts 51 53 47 49
gruntspud 45 46 36 37
jbidwatcher 48 49 33 36
jboss 51 53 57 59
jedit 46 48 39 40
jetty 56 59 65 72
jgraph 50 51 42 42
joone 50 52 45 48
jxplorer 45 47 30 33
l2j 59 62 87 89
megamek 44 45 31 32
nfcchat 51 53 52 53
openwfe 51 53 50 52
pmd 57 60 65 71
spec/compress 51 53 47 50
spec/db 51 53 48 52
spec/jack 51 53 50 55
spec/javac 50 52 39 44
spec/jess 51 52 47 50
spec/mpegaudio 51 53 56 57
spec/mtrt 51 53 48 52
sshtools 53 55 67 68
umldot 49 50 37 38

Figure 3.10: Percentage of reference-typed fields that are semi-stationary. All fields
excludes sun.*; application only also excludes java.* and javax.*.



CHAPTER 3. STUDY OF PROGRAMS 40

The difference between the two is relatively small, never comprising more than 7% of

total fields. This suggests that the simpler and stronger definition of stationary fields

provides most of the benefits of our approach to track objects carefully before they

are lost.

We note that if all objects of a certain class never escape into the heap, but

are used and modified locally, then all the fields in the class are considered semi-

stationary. For example, in the SPEC program db, the top-level database object has

this property. Its fields are repeatedly changed, but it is only stored in local variables.

3.3 Implementation Validation with Dynamic Anal-

ysis

As a way of validating our implementation, we compared the dynamic behavior of the

SPEC JVM98 programs with the results of our inference algorithm. We used bytecode

rewriting to instrument the programs, recording all instance field reads and writes,

and when heap references to objects were created. For ease of implementation, we only

instrumented the application code, and not the Java libraries (specifically, we excluded

classes in the java and sun packages) This allowed the instrumentation to use the Java

libraries without interfering with the bootstrapping process of the JVM. Behavior of

native methods and reflection was not captured by bytecode instrumentation.

In all cases where a field was overwritten at runtime, or where it was written while

after a heap reference existed, the static analysis correctly identified this possibility.

While not exhaustive, the dynamic analysis serves as a substantial independent test

suite, which our implementation passes.

3.4 Dynamic Analysis of Stationary and Final Fields

To determine if stationary and final fields are important to a program’s execution, we

instrumented the SPEC JVM98 benchmarks programs to count the number of times

each instance field was read during execution. Figures 3.11 and 3.12 show the results,



CHAPTER 3. STUDY OF PROGRAMS 41

to
ta

l
%

st
at

io
n

ar
y

%
n

on
st

at
io

n
ar

y
%

%
p

ro
je

ct
re

ad
s

fi
n

al
u

f
cg

f
n

f
to

ta
l

fi
n

al
u

f
cg

f
n

f
to

ta
l

fi
n

al
st

a.
sp

ec
/c

om
pr

es
s

11
44

M
0

33
0

13
46

0
38

0
16

54
0

46
sp

ec
/d

b
23

1M
14

0
0

0
14

0
22

0
64

86
14

14
sp

ec
/j

ac
k

47
M

2
18

0
11

32
0

2
0

67
68

2
32

sp
ec

/j
av

ac
11

1M
1

6
0

17
23

0
1

0
75

77
1

23
sp

ec
/j

es
s

10
4M

0
2

0
2

4
0

3
0

94
96

0
4

sp
ec

/m
pe

ga
ud

io
49

2M
0

79
0

6
85

0
0

0
15

15
0

85
sp

ec
/m

tr
t

12
9M

0
14

0
36

50
0

28
0

22
50

0
50

F
ig

u
re

3.
11

:
P

er
ce

n
ta

ge
s

of
d
y
n
am

ic
re

ad
s

of
re

fe
re

n
ce

-t
y
p

ed
fi
el

d
s,

ex
cl

u
d
in

g
p
ac

ka
ge

s
s
u
n
.
*
.

A
ll

p
er

ce
n
ta

ge
s

ar
e

of
to

ta
l

fi
el

d
s.

(fi
n
a
l:

d
ec

la
re

d
fi
n
al

;
u
f:

u
n
d
ec

la
re

d
fi
n
al

;
cg

f:
fi
n
al

in
p
ro

gr
am

’s
ca

ll
gr

ap
h
;

n
f:

ca
n
n
ot

b
e

in
fe

rr
ed

fi
n
al

;
se

e
S
ec

ti
on

3.
2

fo
r

d
efi

n
it

io
n
s.

)



CHAPTER 3. STUDY OF PROGRAMS 42

to
ta

l
%

st
at

io
n

ar
y

%
n

on
st

at
io

n
ar

y
%

%
p

ro
je

ct
re

ad
s

fi
n

al
u

f
cg

f
n

f
to

ta
l

fi
n

al
u

f
cg

f
n

f
to

ta
l

fi
n

al
st

a.
sp

ec
/c

om
pr

es
s

79
5M

0
1

0
0

1
0

0
0

99
99

0
1

sp
ec

/d
b

92
M

0
0

0
0

0
0

0
0

10
0

10
0

0
0

sp
ec

/j
ac

k
63

M
0

1
0

11
12

0
0

0
88

88
0

12
sp

ec
/j

av
ac

13
2M

0
5

0
0

5
0

0
0

95
95

0
5

sp
ec

/j
es

s
13

9M
0

19
0

0
19

3
0

0
78

81
3

19
sp

ec
/m

pe
ga

ud
io

30
4M

0
2

0
0

2
0

0
0

98
98

0
2

sp
ec

/m
tr

t
16

7M
0

0
0

0
0

0
0

0
10

0
10

0
0

0

F
ig

u
re

3.
12

:
P

er
ce

n
ta

ge
s

of
d
y
n
am

ic
re

ad
s

of
p
ri

m
it

iv
e-

ty
p

ed
fi
el

d
s,

ex
cl

u
d
in

g
p
ac

ka
ge

s
s
u
n
.
*
.

A
ll

p
er

ce
n
ta

ge
s

ar
e

of
to

ta
l

fi
el

d
s.

(fi
n
a
l:

d
ec

la
re

d
fi
n
al

;
u
f:

u
n
d
ec

la
re

d
fi
n
al

;
cg

f:
fi
n
al

in
p
ro

gr
am

’s
ca

ll
gr

ap
h
;

n
f:

ca
n
n
ot

b
e

in
fe

rr
ed

fi
n
al

;
se

e
S
ec

ti
on

3.
2

fo
r

d
efi

n
it

io
n
s.

)



CHAPTER 3. STUDY OF PROGRAMS 43

for reference- and primitive-typed fields respectively. The dynamic numbers exhibit

more variation than the static numbers, ranging from 4 to 78% for reference fields.

These numbers suggest that stationary fields are accessed in real programs. Reads of

final fields are rare; reads of undeclared final fields on the other hand are common,

demonstrating the value of inference of final fields. For fields of primitive type, most

reads are directed at nonstationary fields; this suggests that fields of reference and

primitive types are used differently in programs. For example, it is common to create

a data structure out of stationary reference fields, and then the primitive fields within

that structure are accessed and mutated.

We also analyzed some of the fields most frequently used during execution to gain

a better understanding of how stationary and final fields are used in practice.

Among frequently accessed stationary fields are such things as: the input stream

of a scanner, the table for a hash table, as well as the hash code and key of a table

entry, virtual “this” pointers (e.g. “this$0”) used by inner classes, and input buffers.

79% of the reference field accesses in mpegaudio are directed at stationary fields

that can be declared final, but are not declared as such in the program. The ap-

plication mpegaudio is obfuscated so it is hard to tell what these fields are exactly.

However, they are of type array of array of float. From this, and given that the

program is an MPEG audio decompressor, we may guess that these are statically

allocated arrays for signal processing.

36% of reference fields in mtrt are to stationary but not final fields. The main

reason is that the initialization of an important field is performed outside the con-

structor, in a method called Initialize. This again shows that it is important to

relax the initialization constraints.

Among nonstationary fields, indexes are the most common, such as into buffers

and other arrays and vectors. Also appearing as nonstationary fields are reallocated

structures, such as an input or vector buffer that may need to be resized, or a lazily

generated list of database entries in sort order. In mtrt, 28% of the field reads

are directed at nonstationary fields but can be declared as final fields. In fact, these

fields are also stationary. Our algorithm cannot identify these fields as such because of

imprecision discussed in Section 3.2.3. For primitive-typed fields, the only substantial



CHAPTER 3. STUDY OF PROGRAMS 44

reads of stationary, non-final fields occur in jack; the fields carry information about

whether a buffer is read-only or writeable.

3.5 Bounds Derived from Dynamic Analysis

As described in Section 3.3, we used bytecode instrumentation to classify fields as

either dynamically stationary or nonstationary. By combining these results with the

results of our static analysis, we may classify fields as:

• Statically stationary. Applying our analysis shows that these fields are sta-

tionary in all executions of the program.

• Dynamically stationary. These fields were not modified after being read

during the benchmark execution.

• Nonstationary. These fields were modified after being read during the bench-

mark execution.

Some fields are dynamically stationary but not statically stationary: our analysis

was not able to show that these fields were stationary, but they were during this

particular execution of the program.

Figure 3.13 shows the results of classifying the fields accessed during the execution

of the SPEC benchmark programs in this way, displaying the fields found to be in

the statically stationary and dynamically stationary categories as a percentage of the

fields used during execution.

Note that fields represented here are only a sample of the overall fields: those that

were accessed during benchmark execution. The numbers for statically stationary

fields therefore differ from the results presented earlier, which were for all fields used

in the static call graph of the program. Also, as mentioned earlier, this dynamic

analysis excludes the Java standard libraries for ease of implementation. The results

therefore represent only the application code, where we may expect relatively good

coverage given that these programs are constructed as benchmarks.



CHAPTER 3. STUDY OF PROGRAMS 45

com
press

db jack
javac

jess
m

pegaudio

m
trt

0

20

40

60

80

100

%
 o

f 
fi
e
ld

s

dynamic
static

Figure 3.13: Statically and dynamically stationary fields in the SPECJVM bench-
marks



CHAPTER 3. STUDY OF PROGRAMS 46

These dynamic results are subject to the usual limitations of any dynamic anal-

ysis: they are limited by the coverage of the program executions monitored. They

therefore can only give an upper bound on the possible stationary fields, and it is

not a tight upper bound: some of the fields found to be dynamically stationary may

be nonstationary in another execution, for example given input data other than that

provided for the benchmarks.

Nonetheless, the dynamic results show that our static analysis has captured a

good percentage of the fields that may be stationary, finding at least half of the

dynamically stationary fields to be statically stationary across the benchmarks.

3.6 Distribution of Stationary and Nonstationary

Fields Within Objects

In previous sections we have measured and discussed the overall prevalence of sta-

tionary fields. However, instance fields are not created, stored, and manipulated

independently from each other. They are grouped together into objects of difference

classes.

One thing we might measure is how stationary and nonstationary fields are grouped

together into classes: Is the stationary or nonstationary status of objects within on

object related? Are there objects composed entirely of stationary fields? Nonstation-

ary fields?

The charts in Figures 3.15–3.17 show how stationary fields are grouped into classes.

Figure 3.14 shows a larger version of this chart, for the Azureus application.

On each of these charts, the x-axis represents the number of stationary fields

within a class, and the y-axis the number of nonstationary fields. At each location,

the area of the circle represents the number of classes in the program with the corre-

sponding number of stationary and nonstationary fields as determined by our static

analysis. Any class with more than 20 stationary or nonstationary fields is repre-

sented at the upper or right edge of the chart. Lines of constant x+ y correspond to

objects of constant total size (number of fields.) Along the bottom (y = 0) of each



CHAPTER 3. STUDY OF PROGRAMS 47

0 5 10 15 20
stationary fields

0

5

10

15

20

n
o
n
st

a
ti

o
n
a
ry

 f
ie

ld
s

azureus

Figure 3.14: Distribution of stationary fields within classes in the Azureus benchmark
(application classes only)



CHAPTER 3. STUDY OF PROGRAMS 48

0 5 10 15 20
0

5

10

15

20

azureus

0 5 10 15 20
0

5

10

15

20

columba

0 5 10 15 20
0

5

10

15

20

findbugs

0 5 10 15 20
0

5

10

15

20

freetts

0 5 10 15 20
0

5

10

15

20

gruntspud

0 5 10 15 20
0

5

10

15

20

jbidwatcher

0 5 10 15 20
0

5

10

15

20

jboss

0 5 10 15 20
0

5

10

15

20

jedit

0 5 10 15 20
0

5

10

15

20

jetty

Figure 3.15: Distribution of stationary fields within classes (application classes only),
benchmarks azureus–jetty



CHAPTER 3. STUDY OF PROGRAMS 49

0 5 10 15 20
0

5

10

15

20

jgraph

0 5 10 15 20
0

5

10

15

20

joone

0 5 10 15 20
0

5

10

15

20

jxplorer

0 5 10 15 20
0

5

10

15

20

l2j

0 5 10 15 20
0

5

10

15

20

megamek

0 5 10 15 20
0

5

10

15

20

nfcchat

0 5 10 15 20
0

5

10

15

20

openwfe

0 5 10 15 20
0

5

10

15

20

pmd

0 5 10 15 20
0

5

10

15

20

spec/compress

Figure 3.16: Distribution of stationary fields within classes (application classes only),
benchmarks jgraph–spec/compress



CHAPTER 3. STUDY OF PROGRAMS 50

0 5 10 15 20
0

5

10

15

20

spec/jess

0 5 10 15 20
0

5

10

15

20

spec/db

0 5 10 15 20
0

5

10

15

20

spec/javac

0 5 10 15 20
0

5

10

15

20

spec/mpegaudio

0 5 10 15 20
0

5

10

15

20

spec/mtrt

0 5 10 15 20
0

5

10

15

20

spec/jack

0 5 10 15 20
0

5

10

15

20

sshtools

0 5 10 15 20
0

5

10

15

20

umldot

Figure 3.17: Distribution of stationary fields within classes (application classes only),
benchmarks spec/jess–umldot



CHAPTER 3. STUDY OF PROGRAMS 51

azureus

colum
ba

findbugs

freetts

gruntspud

jbidwatcher

jboss
jedit

jetty
jgraph

joone

jxplorer

l2j
m

egam
ek

nfcchat

openwfe

pm
d

sshtools

um
ldot

0

20

40

60

80

100

%
 v

a
lu

e
 c

la
ss

e
s

com
press

jess
db javac

m
pegaudio

m
trt

jack

0

20

40

60

80

100

%
 v

a
lu

e
 c

la
ss

e
s

Classes with Entirely Stationary Fields

Figure 3.18: Percentage of classes composed entirely of stationary fields

chart are classes with entirely stationary fields, and along the left edge classes with

entirely nonstationary fields.

The charts show that stationary fields are correlated within classes. If classes

were created with a random mixture of stationary and nonstationary fields, lines

of constant size would form a binomial distribution. Instead, there is more weight

towards the edges of the graph.

Classes with entirely nonstationary fields may represent analysis imprecision. If

the object that contains them is lost very early in initialization, before any fields are

initialized, the analysis will be unable to find any stationary fields.



CHAPTER 3. STUDY OF PROGRAMS 52

azureus

colum
ba

findbugs

freetts

gruntspud

jbidwatcher

jboss
jedit

jetty
jgraph

joone

jxplorer

l2j
m

egam
ek

nfcchat

openwfe

pm
d

sshtools

um
ldot

0

20

40

60

80

100

%
 v

a
lu

e
 c

la
ss

e
s

com
press

jess
db javac

m
pegaudio

m
trt

jack

0

20

40

60

80

100

%
 v

a
lu

e
 c

la
ss

e
s

Classes with Entirely Stationary Fields (Application Only)

Figure 3.19: Percentage of classes composed only of stationary fields (application
only)



CHAPTER 3. STUDY OF PROGRAMS 53

3.6.1 Value Classes

Classes that contain entirely stationary fields are of special interest. They are some-

times known as value classes, and have some valuable properties. Because they have

no state that changes, they may be shared freely, without worrying that other refer-

ences may interfere by modifying the object. For example, Java provides immutable

boxed numeric types (e.g. java.lang.Integer) so that numeric types may be stored

in generic data structures. These types consist of a single immutable field of corre-

sponding primitive type. Because all data contained in these classes is immutable,

code need not worry about sharing instances of them.

Such classes also may be shared freely between threads without locking (provided

that their initialization is occurs before they are shared, as is the case for fields our

analysis determines to be stationary.) Goetz [14] defines an annotation @Immutable

for a similar property: those classes whose instance fields are all final.

Figures 3.18 and 3.19 shows the fraction of classes in our benchmarks that contain

only stationary fields. All of our benchmark programs contain many classes composed

only of stationary fields: over 40% even when considering only the application’s code

excluding the Java libraries, with the single exception of javac. This percentage is

in fact comparable to the overall prevalence of stationary fields. If stationary and

nonstationary fields were mixed randomly together into classes, we would expect the

percentage of classes with entirely stationary fields to be less than the the percentage

of stationary fields. One reason there are so many such classes is that there are

many classes that contain a single field. Another is the presence of classes with

many fields, all of which are found to be nonstationary (perhaps due to analysis

imprecision.) For example, the azureus benchmark contains a class with 302 fields,

all of which our analysis believes are nonstationary. (The class represents the main

window of the application; the fields are the many dialog boxes, menus, menu items,

buttons, subpanels, etc., that the main window contains or invokes.) With so many

nonstationary fields consumed by a small number of classes, a larger fraction of the

remaining fields are stationary. Of course, another possible reason that there are more

classes with no nonstationary fields than predicted by chance is that programmers

are intentionally creating such classes due to the benefits such as those given above.



Chapter 4

Extensions to the Definition of

Stationary Fields

The study of programs presented in the previous chapter showed that stationary fields

account for approximately half of the fields in real Java programs. The more station-

ary fields we find, the more valuable stationary fields can be to program analysis

and understanding. However, there may be fields that behave similarly to stationary

fields, and have similar properties, but do not meet the definition of stationary fields.

Identifying these fields can yield similar benefits to finding more stationary fields.

In this chapter, we identify two examples of programming idioms that may cause

fields that seem to be constant to be nonstationary. We also give algorithms for

locating these fields, and examining how common these idioms are in our benchmark

programs.

4.1 Lazy Initialization

One reason fields may be nonstationary according to our definition, even if they seem

to be unchanging, is if the programmer has attempted to defer their initialization

until well after the object’s creation. Such fields may be initialized lazily, with their

initialization not attempted until the program needs to access the field. This is often

an attempt to optimize the program. By deferring an expensive initialization, an

54



CHAPTER 4. EXTENSIONS TO THE DEFINITION 55

class Foo {
private Object f;

public Object getf(void) {
if (this.f == null) {
this.f = new X();

}
return this.f;

}
}

Figure 4.1: Code showing lazy initializer.

object may be used more quickly following its creation. Furthermore, if the program

never attempts to access the field, the cost of the initialization is saved entirely.

Figure 4.1 shows code exemplifying a common pattern for lazy initialization. Upon

object creation, f retains the default null value. Access to field f is provided by an

accessor function getx. If f has not be previously initialized, the function does so,

setting it to a value guaranteed to be nonnull (in this case a newly created object).

It then returns the value of f.

Field f will be nonstationary in any program that calls getf. Method getf must

read f before it writes f, in order to test whether f has been previously initialized.

The write initializing f occurs after this read, rendering f nonstationary. Although

it would be possible to use a separate boolean flag indicating when the field has been

initialized, this introduces a space overhead, so it is common to use the null value (or

occasionally other sentinel value) in the field instead, as our example shows.

However, when invoked on the same object, getf will always return the same value.

We therefore say that getf is a stationary method, by reference to the property of a

stationary field that every time it is read on a particular object, the same value results.

Other examples of stationary methods would include simple accessors of stationary

fields, for example a method whose entire body is “return this.f;” where f is a

stationary field.

A field that is properly lazily initialized appears to have very similar properties

to a stationary field. Although the field is nonstationary, and the initial null value is

read from the field before its terminal value is assigned, the propagation of the null



CHAPTER 4. EXTENSIONS TO THE DEFINITION 56

value is limited. It is used only to guard the initial assignment. The nonstationary

property of the field is apparent only to a very small section of code.

Given this, we may wish to search for fields that are lazily initialized, as they

appear to most of the program to be constant, and so locating them will yield the

same benefits as finding stationary fields.

4.1.1 Algorithm

We propose an algorithm for finding lazily initialized fields. The design of our algo-

rithm is based on the idea that lazy initializers are frequently quite stylized, closely

resembling the example in our figure. Specifically, we look for fields where:

• all access to the field is confined to a single method in the program;

• the field is reference-typed;

• the null value is used as the sentinel indicating that the field is uninitialized;

and

• the single method that may read or write the field serves as an accessor, always

returning the terminal value of the field.

The first step in our analysis is to locate all reference-typed fields in a program

that are read or written only in a single method. For each such field l and method m,

we perform an analysis to determine whether the corresponding method m is a lazy

initializer of l. It must meet the following criteria:

• m assigns to l only through the this pointer.

• m assigns to this.l iff this.l was null at entry to m.

• The return value of m is always the same as the value of this.l at the end of

the m.

To determine this, we perform a flow-sensitive, intra-procedural analysis. The

analysis accepts a candidate lazy field l and method m. We present the analysis over

the reduced language given in Section 2.3.1, with the following additions:



CHAPTER 4. EXTENSIONS TO THE DEFINITION 57

• There is a distinguished local variable this.

• Branch conditions of the form if x = null then s1 else s2 are used.

At each point in the method, the analysis determines:

• The initial null state Nl, a set of boolean values indicating the possible nullness

of l at method entry. If T ∈ Nl, then l may have been null at method entry; if

F ∈ Nl, then l may have been nonnull at method entry.

• Boolean Sl indicating that l has been properly initialized: that it has been

assigned in this method if l was null upon entry to the method. Sl must be true

at the end of the method for it to be a lazy initializer of l. (For the case where

l was nonnull upon entry, it is not allowed to be overwritten; this is checked at

each assignment.)

• Initial variables Il: a set of local variables that are known to hold the value of

that l held at the entry to the current method.

• Current variables Cl: a set of local variables that are known to hold the value

of l at the program point in question.

The results of the analysis are described by the inference rules given in Figure 4.2.

The inference relate the values of Nl, Sl, Il, and Cl before a statement to those after

it. For example, rule LazyAssign, which reads

(LazyAssign)

y ∈ Il → x ∈ I ′
l I ′

l ⊇ Il − {x} y ∈ Cl → x ∈ C ′
l C ′

l ⊇ Cl − {x}

l, Nl, Sl, Il, Cl ` x = y ⇒ Nl, Sl, I
′
l , C

′
l

states that after an assignment x = y, all variables held the initial value of this.l

prior to the statement still do, except for x, which holds the initial value after the

assignment if y held it prior to the assignment; and likewise for variables that hold the

current value of this.l. The analysis proceeds from the definition of the candidate



CHAPTER 4. EXTENSIONS TO THE DEFINITION 58

(LazyAssign)

y ∈ Il → x ∈ I ′
l I ′

l ⊇ Il − {x} y ∈ Cl → x ∈ C ′
l C ′

l ⊇ Cl − {x}
l, Nl, Sl, Il, Cl ` x = y ⇒ Nl, Sl, I

′
l , C

′
l

(LazyLoad)

((y = this) ∧ f = l ∧ ¬Sl)→ x ∈ I ′
l

I ′
l ⊇ Il − {x} (y = this) ∧ f = l→ x ∈ C ′

l C ′
l ⊇ Cl − {x}

l, Nl, Sl, Il, Cl ` x = y.f ⇒ Nl, Sl, I
′
l , C

′
l

(LazyStoreThis)

S ′
l = T F 6∈ Nl C ′

l = y

l, Nl, Sl, Il, Cl ` this.l = y ⇒ Nl, S
′
l, Il, C

′
l

(LazyStore)

(x = this ∨ f 6= l)

l, Nl, Sl, Il, Cl ` x.f = y ⇒ Nl, Sl, Il, Cl

(LazySeq)

l, Nl, Sl, Il, Cl ` s1 ⇒ N ′
l , S

′
l, I

′
l , C

′
l l, N ′

l , S
′
l, I

′
l , C

′
l ` s2 ⇒ N ′′

l , S
′′
l , I

′′
l , C

′′
l

l, Nl, Sl, Il, Cl ` s1; s2 ⇒ N ′′
l , S

′′
l , I

′′
I , C

′′
l

(LazyIf)

N ′
l = N ′

l1 ∪N ′
l2 S ′

l = S ′
l1 ∧ S ′

l2 I ′
l = I ′

l1 ∩ I ′
l2 C ′

l = C ′
l1 ∩ C ′

l2

l, Nl, Sl, Il, Cl ` s1 ⇒ N ′
l1, S

′
l1, I

′
l1, C

′
l1 l, Nl, Sl, Il, Cl ` s2 ⇒ N ′

l2, S
′
l2, I

′
l2, C

′
l2

l, Nl, Sl, Il, Cl ` if ∼ then s1 else s2 ⇒ N ′
l , S

′
l, I

′
l , C

′
l

(LazyIfNull)

Nl1 = b(Nl,T, x ∈ Il) Nl2 = b(Nl,F, x ∈ Il) Sl2 = Sl ∨ x ∈ Il
N ′

l = N ′
l1 ∪N ′

l2 S ′
l = S ′

l1 ∧ S ′
l2 I ′

l = I ′
l1 ∩ I ′

l2 C ′
l = C ′

l1 ∩ C ′
l2

l, Nl1, Sl, Il, Cl ` s1 ⇒ N ′
l1, S

′
l1, I

′
l1, C

′
l1 l, Nl2, Sl2, Il, Cl ` s2 ⇒ N ′

l2, S
′
l2, I

′
l2, C

′
l2

l, Nl, Sl, Il, Cl ` if x = null then s1 else s2 ⇒ N ′
l , S

′
l, I

′
l , C

′
l

b(Nl, t, p) ≡
{
Nl if p is false;
Nl ∩ {t} if p is true.

Figure 4.2: Inference rules for finding lazy initializers.



CHAPTER 4. EXTENSIONS TO THE DEFINITION 59

(LazyWhile)

N ′
l ⊇ Nl S ′

l → Sl I ′
l ⊆ Il C ′

l ⊆ Cl N ′
l , S

′
l, I

′
l , C

′
l ` s⇒ N ′

l , S
′
l, I

′
l , C

′
l

l, Nl, Sl, Il, Cl ` while ∼ do s⇒ N ′
l , S

′
l, I

′
l , C

′
l

(LazyNew)

I ′
l = Il − {x} C ′

l = Cl − {x}
l, Nl, Sl, Il, Cl ` x = new()⇒ Nl, Sl, I

′
l , C

′
l

(LazyInvoke)

I ′
l = Il − {x} C ′

l = Cl − {x}
l, Nl, Sl, Il, Cl ` x = m(y1, y2, . . . )⇒ Nl, Sl, I

′
l , C

′
l

(LazyMethod)

y ∈ C ′
l S ′

l

Nl = {T,F} Sl = F Il = ∅ Cl = ∅ l, Nl, Sl, Il, Cl ` s;⇒ N ′
l , S

′
l, I

′
l , C

′
l

` m(this, x1, . . . , xi){s; return y} initializes l

Figure 4.3: Inference rules for finding lazy initializers.

lazy initializer method: the final judgment is ` m(this, x1, . . . ){. . . } initializes l. If,

from the rules, we can infer this judgment, m is a lazy initializer of l.

The remaining rules provide the following:

• After a load x = y.f , x holds the initial value of l if y is this, f is l, and l has

not yet been set. Otherwise it does not hold the initial value of l. Iff y is this

and f is l, x holds the current value of l. (LazyLoad)

• After a store this.l = y, l has been initialized (S is true) if it is known to have

been initially null; if it is not known to be initially null, m cannot be a lazy

initializer of l. Source variable y now holds the current value of l. (LazyS-

toreThis)

• If m contains a store to l other than through this, it is not considered a lazy

initializer of l. We require initialization to occur through the this pointer.

Any writes through other variables could overwrite a previously initialized l.

(LazyStore)

• In a sequence s1; s2, the conditions prior to s1 are those at entry to the sequence;



CHAPTER 4. EXTENSIONS TO THE DEFINITION 60

those after s1 are those before s2; and the conditions at the conclusion of the

sequence are those after s2. (LazySeq)

• In an if statement, the conditions prior to each branch are the same as on entry

to the if statement. After the if statement, the nullness of l is that at the

conclusion of either branches; variables hold the current or initial value of l if

they held it at the end of both branches; and l has been initialized if it was on

both branches. (LazyIf)

• If the branch condition of an if statement compares a variable that holds the

initial value of l to null, then l is known to be null on the then taken branch

and nonnull on the else branch. S is properly initialized on the else branch (S

holds the condition “if l was null at entry, it has been set”; since l was not null

at entry, the condition is trivially true.) (LazyIfNull)

• The nullness of l, current and initial variables, and whether l has been initial-

ized at the exit of a loop must be a fixed point under the body of the loop.

(LazyWhile)

• Object creations and method invocations have no effect except to kill any as-

signed variable from those holding the current or initial values of l. (LazyNew,

LazyInvoke)

• At the start of a candidate lazy initializer, l may be either null or nonnull. l has

not been initialized. No variables hold its current or initial value. If l has not

been initialized at the conclusion of m, m is not a lazy initializer of l. If m does

not return the final value of l, it is not a lazy initializer of l. (LazyMethod)

4.1.2 Program Study

We applied this algorithm for finding lazy initializers to our benchmark programs.

The results are shown in Figure 4.4. We find twenty-three fields with lazy initializers

in most of our benchmarks; these fields are entirely within the Java standard libraries.

The lazy initializer pattern is not a dominant one in the benchmarks. However, as it



CHAPTER 4. EXTENSIONS TO THE DEFINITION 61

program fields % fields
azureus 8 0.4
columba 26 0.4
findbugs 9 0.4
freetts 23 0.5
gruntspud 28 0.4
jbidwatcher 23 0.5
jboss 22 0.5
jedit 25 0.4
jetty 7 0.4
jgraph 23 0.5
joone 26 0.5
jxplorer 22 0.4
l2j 7 0.4
megamek 28 0.5
nfcchat 23 0.5
openwfe 23 0.5
pmd 7 0.4
spec/compress 23 0.5
spec/jess 23 0.5
spec/db 23 0.5
spec/javac 23 0.5
spec/mpegaudio 23 0.5
spec/mtrt 23 0.5
spec/jack 24 0.5
sshtools 22 0.4
umldot 23 0.5

Figure 4.4: Fields with lazy initializers.
Shown as number of fields found, and as a percentage of all reference-typed fields in
each benchmark.



CHAPTER 4. EXTENSIONS TO THE DEFINITION 62

does occur in the standard libraries, it covers about half a percent of the fields in all

the benchmarks. Recognizing it would allow a tool to treat these fields similarly to

stationary fields.

4.2 Object Disposal

4.2.1 Motivation

So far, we have focused primarily on objects’ initialization and the beginning of their

lifetime. In the same way that the early life of an object may be special in that writes

are allowed to fields that are otherwise constant to initialize them, some otherwise

constant fields may be written near the death of their containing object.

One pattern that occurs is for fields to be set to null just before the object is dead.

The programmer may think that this will aid the garbage collector in reclaiming

objects.

Otherwise constant fields with such writes are not stationary. We can look for

cases where writes at object disposal time are preventing fields from being stationary

by looking for fields that are stationary except for one or more writes with a null

value. Such fields have the property that their observed value may contain a single

non-null to null transition, essentially parallel to final fields which may observe a

single null to non-null transition.

Although these fields do not have the full properties of stationary fields, they may

still be useful for program analysis. Although one does not necessarily have the same

value every time they are read, reading it cannot yield two distinct objects. Unless

the program specifically checks for null values in the field, the only practical difference

between these fields and stationary fields is that a program that uses the value after

it is set to null may generate a null pointer exception. Any property that is based on

the field not holding different objects should still hold.



CHAPTER 4. EXTENSIONS TO THE DEFINITION 63

4.2.2 Algorithm

To locate these fields, we make a simple change to our stationary fields inference

algorithm. We change it to ignore all fields writes where the right hand side is the

null constant. (We look only for the null constant itself and perform no analysis

of whether variables must be null.) The change is confined to the STORE rule,

which is modified to treat such writes as if they did not exist. The input language

is extended to include store statements with a null right-hand side (x.f = null); and

such statements have no effect, as specified by the following additional inference rule:

(STORENULL)

m,P, U,Q ` x.f = null⇒ P,U,Q

4.2.3 Program Study

We applied this modified version of our stationary fields inference algorithm to the

same benchmarks we used for in Chapter 3. The results are shown in Figure 4.5,

which shows the additional number of fields that are accepted by the modified algo-

rithm in each benchmark. In each benchmark, about 1-2% of reference-typed fields

are nonstationary only because of one or more writes with the value of null. The

small number of fields found relative to the number of stationary fields indicates that

programmers are not making many otherwise stationary fields nonstationary for the

reasons given above. Nonetheless, because a weakened version of the stationary prop-

erty holds for these fields, this additional small fraction of fields may be useful for

program analysis.

4.2.4 Resource Management

The most common use of writing null values was for resource management: an object

would nullify its reference to another object so that the referred object would be freed

immediately by the garbage collector even in the referring object could not be. The

majority of these examples occurred in a single library, the Eclipse SWT, which is a

windowing library used by several of the GUI applications.



CHAPTER 4. EXTENSIONS TO THE DEFINITION 64

program fields % fields
azureus 52 2.4
columba 76 1.3
findbugs 41 1.9
freetts 69 1.4
gruntspud 80 1.2
jbidwatcher 73 1.4
jboss 72 1.5
jedit 73 1.2
jetty 34 2.1
jgraph 72 1.5
joone 68 1.4
jxplorer 69 1.2
l2j 35 2.0
megamek 66 1.1
nfcchat 69 1.4
openwfe 68 1.4
pmd 35 2.0
spec/compress 68 1.4
spec/jess 68 1.4
spec/db 68 1.4
spec/javac 72 1.5
spec/mpegaudio 69 1.4
spec/mtrt 68 1.4
spec/jack 68 1.4
sshtools 77 1.5
umldot 68 1.4

Figure 4.5: Fields that are stationary except for being set to null.
Shown as number of fields found, and as a percentage of all reference-typed fields in
each benchmark.



CHAPTER 4. EXTENSIONS TO THE DEFINITION 65

4.2.5 Other Uses of Null

This analysis also identified some nearly constant fields that did not fit within the

definition of a stationary field. Several fields were set repeatedly to null, and this was

the only value they were ever assigned. Because some of the writes occurred after

the objects were heap-referenced, our analysis could not identify them as stationary.

Indeed, because the fields may have been read before they were set again to null,

they do not meet the definition of stationary. These fields point to another possible

expansion of the definition of stationary: fields for which all of the non-silent writes

precede all of the reads.



Chapter 5

Applications of Stationary Fields

In this chapter we show four applications of stationary fields, as examples of how

stationary fields may be useful for program analysis and understanding. The first

three example applications are to concurrent programs. Concurrent programs are

currently very common, and are expected to become more so given the recent shift

in commodity hardware from uniprocessors to multicore processors. These first three

applications take advantage of the property that threads cannot interfere with each

other by modifying stationary fields, as stationary fields do not change.

5.1 Lock Elision

Our first application shows how stationary fields may be applied to locks, which are

a fundamental tool used by concurrent programs. We use stationary fields to show

that some locks in programs are unnecessary. These results can allow programmers

to understand one instance where their applications are needlessly using locks, and

allow them to optimize their applications by removing extraneous synchronization.

Multithreaded programs require a way to prevent threads from interfering with

each other as they operate on shared data structures. One concurrency error that

can occur is a race: a condition in which two threads may access the same memory

location, no ordering between the two accesses is enforced, and at least one of the

accesses involved is a write.

66



CHAPTER 5. APPLICATIONS OF STATIONARY FIELDS 67

Java provides locks as the primary synchronization primitive: only one thread can

hold a lock at any time, and a thread that attempts to acquire a lock held by another

thread will block. Programmers prevent races by ensuring that whenever two threads

may attempt to access the memory location simultaneously, the use of some common

lock will delay one of the threads and prevent a race.

5.1.1 Stationary Fields and Races

A field found to be stationary by our algorithm cannot be involved in a race. In

general, a stationary field can only be involved in a race during its initialization:

after initialization is complete, there are by definition no more writes. Because at

least one of the accesses in a race must be a write, a race cannot occur at this point.

This leaves the possibility of a race during initialization. However, a field found

to be stationary by our inference algorithm cannot have a race during initialization

either. Our algorithm’s simplifying assumption that initialization occurs before an

object is referenced by another object implies that initialization is performed by a

single thread: an object can only become visible to a thread other than its creator

by being referenced by some object on the heap. That is, tracking whether objects

are lost also serves as a rudimentary escape analysis. Local variables are not shared

between threads in Java. Because a race involved accesses by two threads and the

object is only visible to one, a race cannot occur.

5.1.2 Unnecessary Synchronizations

The use of a lock is indicated in a Java program through the use of the synchronized

keyword. Usually it is applied to a method, indicating that the invoking thread must

hold the lock associated with the this object during the execution of the method;

such methods are synchronized methods. The keyword may also be applied to a block

of code, with a specific lock designated.

The primary use of locks is to prevent data races, and so we would expect that

every synchronized method contains some computation that could involve a race.



CHAPTER 5. APPLICATIONS OF STATIONARY FIELDS 68

However, some synchronizations may not be needed: if a synchronized method ac-

cesses only stationary fields, then the synchronization does not protect against any

races.

5.1.3 Algorithm

An algorithm for finding synchronizations that prevent no races is straightforward,

given a program, a list of stationary fields provided by our inference algorithm, and

the call graph used by it. Given a synchronized method m, we:

• Calculate all transitive callees of m, by traversing the call graph to find every

method is reachable from m.

• Obtain the set of all fields referenced by the callees by a simple scan of each

method.

• If all the fields are stationary, the synchronization for m prevents no races.

5.1.4 Experimental Results

We applied this algorithm to our benchmark programs. Figure 5.1 shows the fraction

of synchronized methods that use only stationary fields. Surprisingly, it is approxi-

mately 7% across nearly all the benchmarks, rather than just the handful of methods

that one might expect. In part this may be defensive. The primary drawbacks to

extraneous synchronization are reduced performance and the possibility of deadlocks.

Programmers are generally not as worried about these as they are about creating

races, which can be the implication of a missing lock. Many of the synchronized

methods are in the Java libraries and may be needed in circumstances outside these

programs to guard against races in other code. Looking at only the application code,

most programs contain very few synchronized methods, and few of those use only

stationary fields. For example, although 18% of the synchronized methods in the

application code of joone use only stationary fields, that is only 8 methods.



CHAPTER 5. APPLICATIONS OF STATIONARY FIELDS 69

all methods app. only
program methods % methods methods % methods
azureus 20 8
columba 57 8 2 4
findbugs 11 5 0 0
freetts 48 7 0 0
gruntspud 54 8 2 5
jbidwatcher 51 8 2 11
jboss 49 7 0 0
jedit 49 7 0 0
jetty 19 9
jgraph 51 8 0 0
joone 56 8 8 18
jxplorer 54 8 1 5
l2j 20 9 0 0
megamek 51 6 0 0
nfcchat 48 7 0 0
openwfe 48 7 0 0
pmd 18 8
spec/compress 48 7 0 0
spec/jess 50 7 0 0
spec/db 48 7 0 0
spec/javac 48 7 0 0
spec/mpegaudio 48 7 0 0
spec/mtrt 48 7 0 0
spec/jack 48 7 0 0
sshtools 56 8 7 13
umldot 48 7 0 0

Figure 5.1: Synchronized methods that use only stationary fields.
Shown as the number and percentage of synchronized methods, considering all syn-
chronized methods in each benchmark’s call graph, and for the application’s methods
only. The applications corresponding to the blank entries contain no synchronized
methods outside the Java libraries.



CHAPTER 5. APPLICATIONS OF STATIONARY FIELDS 70

5.2 Optimizing a Software Transactional Memory

In the previous section we examined applying stationary fields to locks, which are

the currently dominant method of concurrency control in Java programs. Current

research is exploring other method: software transactional memories (STMs). A

STM provides a way to declare that the effects of a section of code should not be

interleaved with the effects of other threads. The STM enforces atomicity by adding

barriers to memory access, so that it may prevent transactions from interfering with

each other.

A transactional memory may provide either strong or weak isolation semantics. In

a weakly isolated STM, atomic blocks are only guaranteed to appear atomic to other

atomic blocks; non-transactional code may observe intermediate results of an atomic

block. Conversely, in a strongly isolated STM, atomic blocks appear atomic to all

other code. Strong isolation provides a more intuitive guarantee to the programmer.

However, it it more expensive to provide the stronger semantics. For example, the

STM must ensure that every read, whether inside an atomic block or not, does not

observe an intermediate result of an atomic block; this may require a memory barrier

on every read.

5.2.1 Experimental Results

We investigated the benefits of using stationary fields to optimize AJ, a strongly

isolated Java STM. [6] We ran our stationary fields inference algorithm on the trans-

actional program, and provided the results to AJ, which then eliminated the memory

barriers on the stationary fields. We examined the performance of the benchmark

program with and without this information. AJ includes a local stationary fields

analysis, which finds stationary fields that can be detected while examining a single

class at a time (i.e. only private fields.) We also examined disabling this local anal-

ysis, so that the total effects of using stationary fields could be discerned, as well as

the incremental value of using our more powerful, whole-program, stationary fields

analysis.

We performed these experiments on a single benchmark used in the evaluation of



CHAPTER 5. APPLICATIONS OF STATIONARY FIELDS 71

num. num. fields time per total swap
isolation analysis swaps swapped field (msec) swap time (s)
strong none 69± 1.0 522± 2.9 28.14± 1.25 14.69
strong local 65± 2.3 447± 1.9 29.63± 1.85 13.24
strong static 57± 5.8 435± 1.3 33.85± 1.30 14.72
strong local + static 56± 2.0 377± 1.2 33.74± 3.58 12.73
weak none 1± 0.0 9± 0.0 13.50± 0.17 0.12
weak static 1± 0.0 9± 0.0 13.44± 0.08 0.12

Figure 5.2: Barrier swap performance of software transactional memory on SPECjbb
benchmark using stationary fields analysis.

AJ: a version of the SpecJBB2005 benchmark modified to use atomic regions. The

experiments were performed in the same environment as the evaluation of AJ. We ran

each configuration five times and we report mean results with corresponding standard

deviations.

We ran the STM with and without our stationary fields analysis (indicated as

“static” in the results.) We also ran it with and without AJ’s stationary fields analysis

(indicated as “local.”)

Figure 5.2 shows the barrier swap costs incurred by each configuration. It shows

the number of times the hot swap was used, the number of fields for which barriers

were swapped, the time in swaps per field, and the total time spent swapping barriers.

As expected, providing static information about stationary fields does reduce the

number of swapped fields. The reduction in fields swapped indicates that stationary

fields are used in the benchmark program. Because of the cost of inserting an opti-

mized barrier (and the very large potential cost of undoing the placement of a barrier

based on an incorrect hypothesis) the STM only inserts optimized barriers for fre-

quently used fields. For example, our stationary fields analysis found 58 (435− 377)

fields over the AJ’s local analysis that the STM considered important enough to

optimize.

AJ includes many optimizations, some of which diminish the potential benefits

of stationary fields. For example, because the STM batches the barrier swaps, the

number of times the hot swap mechanism is invoked is not greatly reduced. The hot



CHAPTER 5. APPLICATIONS OF STATIONARY FIELDS 72

swap mechanism has a large fixed overhead each time it is invoked. Because of this,

there is little improvement in total barrier swap time despite the reduced number of

fields for which barriers must be inserted.

AJ also includes optimizations to improve the steady-state performance. One

of the main features of AJ is that it uses optimized barriers based on the observed

access patterns of fields. By observing the dynamic behavior of each field, it produces

a hypothesis about the access pattern of the field. Based on this hypothesis it may

choose to insert a cheaper barrier (at the expense of a very expensive operation if the

hypothesis is incorrect.) These dynamic optimizations can capture the properties of

stationary fields, and so they may blunt the benefits of providing static information

about stationary fields.

Figures 5.3 and 5.4 show the throughput of the SpecJBB benchmark in each

configuration. Throughput is given as microseconds per SpecJBB business operation

(smaller numbers are better.) Figure 5.3 shows the throughput in each configuration

as a function of the number of threads. Figure 5.4 shows the peak throughput of each

configuration: the performance with the number of threads that produces the best

throughput. The results show that using stationary fields to optimize the STM does

produce an improvement in application throughput (with at least 95% confidence

for strong/none vs. strong/local+static, and for weak/none vs. weak/static.) The

results also show a small speedup by adding the static analysis to the local one for

the strong isolation case; however, the result is not statistically significant at the 95%

level given the small number of runs.

5.3 Optimizing Interthread Communication Mon-

itoring

5.3.1 Motivation

Many Java programs, especially those that run in server environment and GUI ap-

plications, use multithreading extensively. Server-side programs often use threads in

order to handle multiple clients. Client-side programs often use threads to remain



CHAPTER 5. APPLICATIONS OF STATIONARY FIELDS 73

2 3 4 5 6 7 8
80

90

100

110

120

130

140

150

160

u
se

c/
b
u
si

n
e
ss

 o
p

st
ro

n
g
 i
so

la
ti

o
n

none
local
static
local+static

2 3 4 5 6 7 8
number of threads

50

60

70

80

90

100

110

u
se

c/
b
u
si

n
e
ss

 o
p

w
e
a
k 

is
o
la

ti
o
n

none
static

Figure 5.3: Performance of a software transactional memory on SPECjbb benchmark
using stationary fields analysis.

isolation analysis µs/business op. threads
strong none 91.57± 0.92 7
strong local 90.31± 0.78 6
strong static 90.40± 1.39 7
strong local + static 89.94± 1.19 7
weak none 54.35± 0.63 5
weak static 53.30± 0.48 5

Figure 5.4: Performance of software transactional memory on SPECjbb benchmark
using stationary fields analysis (optimal number of threads).



CHAPTER 5. APPLICATIONS OF STATIONARY FIELDS 74

responsive to the user even while long-running computation or slow network accesses

are in progress. The Java standard libraries and standard Java programming idioms

encourage, or in some cases even require, the use of multiple threads. For example,

multithreading is the primary way to support concurrent I/O.

Support for multithreading is built into Java. Synchronization primitives are

included in the language, facilities for starting threads are defined as part of the

standard library, and even some concurrent data structures are provided.

Threads communicate through data structures that they share. The patterns of

exchange between threads can therefore be arbitrarily complex, as they are limited

only by the data structures that may be created.

In large programs, which may have many different types of threads running for

many different purposes, the communication between threads may grow so complex

that programmers do not understand them. They could use a tool that reports

communication between threads to understand the structure of their programs.

5.3.2 Dynamically Monitoring Thread Communication with

Tags

One way to obtain information about the interthread communication is to monitor

the runtime behavior of a program. Flows2 [27] is one such tool. It uses bytecode

instrumentation to modify an application such that direct communication between

threads can be recorded.

The goal of flows2 is to capture the thread communication graph of the execution

of a program. In the thread communication graph, each thread in the program is a

node, and there is an edge from thread t1 to t2 iff t2 reads a value from a variable and

that value was written by t1: that is, if there is direct information flow from t1 to t2.

The graph may also be labeled to indicate some property of the flow; for example it

may be labeled with a field f to indicate that the communication occurred through

that field.

Flows2 observes the communication by tagging each field with the identity of the

last thread that wrote it. (Only fields need be instrumented because local variables



CHAPTER 5. APPLICATIONS OF STATIONARY FIELDS 75

cannot be shared between threads in Java.) Each write of any field is instrumented

to also update the relevant tag with the identity. Each read of a field is instrumented

to record a flow from the last thread to write that field, as recorded in the tag, to the

reading thread. When the program terminates, the resulting graph is reported to the

programmer. Similar tagging techniques could also be used to enforce restrictions on

communication between threads, instead of simply recording them. Optimizations

based on stationary fields could be applied in the same ways, which we shall now

describe.

5.3.3 Reducing the Space Overhead with Stationary Fields

This tagging method imposes a substantial overhead on program execution. The

instrumentation incurs a time penalty on every field access. Furthermore, the space

overhead is also large, because every field of each object must have a corresponding

tag.

We can apply stationary fields to thread monitoring to reduce this space overhead.

Our analysis finds stationary fields for which initialization occurs before the containing

object is referenced by any other object. This also implies that initialization of the

stationary fields is carried out by the creating thread, because an object can only

become accessible to another thread by having its reference placed in some shared

objects. Therefore, while nonstationary fields each require a tag, all stationary fields

in an object may share a single tag recording the creating thread. Furthermore, this

tag is always required even if the object does not explicitly contain any stationary

fields: all objects must contain some record of what class they are, for virtual method

dispatch, reflection, etc. Typically there is a hidden field in each object’s header that

contains a pointer to the appropriate java.lang.Class object. Because the creating

thread chose the type of the object, an operation such as virtual method dispatch that

uses this information represents flow from the creating thread. The instrumentation

therefore requires a tag for the creating thread. The instrumentation for stationary

fields can piggyback on this required tag with no additional space penalty.



CHAPTER 5. APPLICATIONS OF STATIONARY FIELDS 76

Stationary fields can also be used to reduce the time overhead of tagging tech-

niques: if a thread reads from the same field of the same object repeatedly, it is not

necessary to repeat recording the flow. Because the field cannot have changed, the

tag for the field cannot have changed and a new flow cannot occur. This optimiza-

tion is essentially a redundant load removal on the tag for the stationary field. This

technique is even more effective if we do not need to record the field through which

flow occurred. Because all stationary fields must have the same tag, once a thread

has recorded flow from a stationary field of an object, it need not monitor accesses

from any stationary field of that object.

There may also be reasons that we may wish to ignore information flow through

stationary fields. For example, a programmer may be interested only in the com-

munication flows that may cause a race. In that case, it is unnecessary to monitor

stationary fields as they cannot be involved in races.

5.3.4 Experimental Setup

We created dynamic instrumentation to estimate the space overhead of a dynamic,

tagging-based information flow monitor, such as flows2, with and without the op-

timization described above. We applied this instrumentation to the SPEC JVM98

benchmark programs. An alternative approach would have been to modify the flows2

framework to apply the optimization. The primary advantage of our approach is

that the flows2 implementation is a proof of concept and does not instrument all

code. Because our instrumentation is very simple, we can apply it to all executed

Java code, including the standard and system libraries. We may therefore estimate

the space overhead of a complete production system, rather than a demonstration

system. Furthermore our simple dynamic instrumentation is more robust than the

flows2 implementation. We use the SPEC benchmark programs rather than the ap-

plications used in the flows2 demonstration because the SPEC programs come with

reproducible test suites.

Our dynamic instrumentation uses the JVMTI (Java Virtual Machine Tool Inter-

face) to gain access to the Java classes during execution. The JVMTI is an interface



CHAPTER 5. APPLICATIONS OF STATIONARY FIELDS 77

for debugging and profiling that is provided by the JVM. One capability it provides

is the option to be notified of each Java class that is about to be loaded, be provided

the contents of the class file, and, if desired, to replace the contents of the class. Our

framework intercepts each loaded class, and passes it to an instrumentation process.

The instrumentation process runs outside the JVM, eliminating complex interactions

between the instrumentation and the JVM bootstrapping procedure.

The instrumentation process uses the Apache Byte Code Engineering Library

(BCEL) to add instrumentation to count the number of instances of each class that

are created. At each new bytecode, it adds code to increment a counter corresponding

to the class of the created object.

When the program exits, our instrumentation framework is notified through the

JVMTI. It reads the counters from the instrumentation code (they are stored in a

simple array stored in a static variable) and outputs them.

We then combine this information with the results of our stationary fields inference

algorithm, and some basic information about the classes used by the program. To-

gether this tells us what fields each class contains, the type of each field, and whether

each field is stationary or not. From this we calculate the size of an object. We ignore

field alignment and the overhead of the memory allocator and garbage collector. We

assume an 8-byte object header, as used in recent versions of the Sun HotSpot JVM,

and a 32-bit implementation, in which a reference is 4 bytes.

Let the base size B of the object be the number of bytes of storage occupied by its

fields: 4 bytes for each reference type, 2 bytes for a short, 8 bytes for a long, etc. Let

S be the number of stationary fields in the object and N the number of nonstationary

fields.

The uninstrumented size of the object is 8 + F : header plus fields. The instru-

mented size without optimization is 12 + F + 4N + 4S: head, object creator tag,

fields, and tag for each field. The instrumented size with optimization is 12+F +4N ;

stationary fields require no tag. By multiplying the size of each type of object by the

number allocated, and summing the results, we obtain the number of bytes allocated

by the program for the three cases.



CHAPTER 5. APPLICATIONS OF STATIONARY FIELDS 78

com
press

jess
db javac

m
pegaudio

m
trt

jack

0

10

20

30

40

50

60

70

80

90

sp
a
ce

 o
v
e
rh

e
a
d
 (

%
 o

f 
b
a
se

 b
y
te

s 
a
llo

ca
te

d
)

space overhead for thread communication monitoringoptimized
base

Figure 5.5: Space overhead of monitoring thread communication with and without
optimization using stationary fields

5.3.5 Experimental Results

Figure 5.5 shows the reduction in overhead that results from applying this optimiza-

tion to monitoring thread communication in the SPEC JVM98 benchmarks. We

express overhead as additional bytes allocated over the uninstrumented case, as a

percentage of bytes allocated in the uninstrumented cases. The overhead for the base

instrumented case is 75–85%: the tagging method requires nearly as much tag data

as the size of objects. Applying the optimization reduces the overhead on average

by 14% of the uninstrumented bytes, with the maximum being 23% (the db bench-

mark) and the minimum 2% (mtrt). The results demonstrate that these benchmarks

do allocate objects containing stationary fields, and that the optimization can be



CHAPTER 5. APPLICATIONS OF STATIONARY FIELDS 79

profitable.

It is also interesting to compare these results with those in Section 3.4, which

reported the fraction of reads that were of stationary fields. By both metrics the

db application uses stationary fields the most. Overall stationary fields comprise a

smaller percentage of bytes allocated than percentage of reads, which suggests that

the stationary reads are from a smaller number of hot, perhaps long-lived objects,

rather than from a larger number of little-used objects.

5.4 The Java Hash Code Method

In this section, we hypothesize that programmers use stationary fields to ensure that

they are correctly implementing Java’s hashCode method. If this hypothesis holds,

it creates an expectation that specific fields will be stationary. Cases that fit the

pattern provide evidence that programmers use stationary fields to maintain program

invariants. Conversely, by examining fields for which this expectation is violated, we

may discover reasons the definition of stationary fields excludes fields we would expect

it to include.

5.4.1 Background

Maps, sometimes called dictionaries, are a commonly used data structure, and the

Java standard libraries provide a standard interface for maps, as well as implementa-

tions based on hash tables and binary trees. A table-based implementation, such as

java.util.HashMap, requires a way of obtaining a hash value in order to determine

in where in the table a key should be located. To facilitate this, the Java base object

class contains a method hashCode that returns an integer. The implementation in

java.lang.Object returns an hash code based on the identity of the object. Sub-

classes can override the hashCode method if they want their use in hash maps to be

based on some logical notion of the object’s value, rather than its physical identity.

When an object is placed as a key in a hash table, the hash table class will place

it in a particular bucket. If the same object is used in a subsequent lookup, the hash



CHAPTER 5. APPLICATIONS OF STATIONARY FIELDS 80

table will attempt to locate based on its hash code. If the hash code, as returned by

the object’s hashCode method, has changed, the the hash map would be unable to

locate the object, leading to confusing results. This possibility is therefore prohibited

by the contract for hashCode and for maps.

The contract for hashCode [25] states that:

Whenever [hashCode] is invoked on the same object more than once during

an execution of a Java application, the hashCode method must consistently

return the same integer, provided no information used in equals is modi-

fied.

The contract for java.util.Map further states that “The behavior of a map is not

specified if the value of an object is changed in a manner that affects equals compar-

isons while the object is a key in the map.” In combination these two requirements

imply that an object must return the same hash code throughout its tenure as a key

in a map.

5.4.2 Stationary Fields and hashCode

A programmer implementing a hashCode method will need a method of ensuring that

the contract is obeyed, and that the method returns consistent results. One approach

would be to compute the result by using only stationary fields. Because a stationary

field is guaranteed to have the same value each time it is read, a method constructed

in such a fashion will return the same value each time it is invoked on the same object.

5.4.3 Algorithm

We present an algorithm for verifying that hashCode methods conform to the relevant

portion of the hashCode contract, by verifying that the compute their result using

only stationary fields. The algorithm is as follows. Given a hashCode method m:

• Calculate all transitive callees of m, by traversing the call graph to find every

method is reachable from m.



CHAPTER 5. APPLICATIONS OF STATIONARY FIELDS 81

azureus

colum
ba

findbugs

freetts

gruntspud

jbidwatcher

jboss
jedit

jetty
jgraph

joone

jxplorer

l2j
m

egam
ek

nfcchat

openwfe

pm
d

sshtools

um
ldot

0

20

40

60

80

100

%
 h

a
sh

C
o
d
e
 m

e
th

o
d
s

com
press

jess
db javac

m
pegaudio

m
trt

jack

0

20

40

60

80

100

%
 h

a
sh

C
o
d
e
 m

e
th

o
d
s

hashCode methods using only stationary fields

Figure 5.6: Percentage of hashCode methods using only stationary fields

• Obtain the set of all fields referenced by the callees by a simple scan of each

method.

• If every instance field accessed is stationary, and every class field accessed is

final, the hashCode method returns the same value each time it is invoked.

5.4.4 Program Study

We applied this algorithm to our benchmarks; the results are shown in Figures 5.6

and 5.7. About half of all hashCode methods are shown to use only stationary fields.

The percentage is somewhat higher outside the standard libraries; however few of the

hashCode methods occur outside the standard libraries (typically around a dozen of



CHAPTER 5. APPLICATIONS OF STATIONARY FIELDS 82

azureus

colum
ba

findbugs

freetts

gruntspud

jbidwatcher

jboss
jedit

jetty
jgraph

joone

jxplorer

l2j
m

egam
ek

nfcchat

openwfe

pm
d

sshtools

um
ldot

0

20

40

60

80

100

%
 h

a
sh

C
o
d
e
 m

e
th

o
d
s

com
press

jess
db javac

m
pegaudio

m
trt

jack

0

20

40

60

80

100

%
 h

a
sh

C
o
d
e
 m

e
th

o
d
s

hashCode methods using only stationary fields

Figure 5.7: Percentage of hashCode methods using only stationary fields (application
only)



CHAPTER 5. APPLICATIONS OF STATIONARY FIELDS 83

three hundred total hashCode methods.)

This indicates that half of the hashCode methods may be using nonstationary

fields. One reason for this result is the call graph obtained from CHA, which con-

tains large strongly-connected components. Many hashCode methods are contained

in these large SCCs, which are very likely to contain some method that uses a non-

stationary field.

However, examining the results also revealed three major reasons that hashCode

methods may be expected to use nonstationary fields.

hashCode and equals

There are requirements on hashCode other than that it return the same value through-

out its tenure in a hash map. One requirement is that the hashCode method be

consistent with the equals method. The equals method, defined in java.lang.Object

and therefore present on every object, can be used to define a logical notion of object

equality. The equals method of java.lang.Object, which is used for any class that does

not override it, defines equality based on object identity. It considers two objects to

be equal if and only if they are the same object.

Hash maps use a key object’s hash code to select a bucket in which to locate its

entry. However, it uses the key’s notion of equality, defined by equals(), to determine

whether keys located in that bucket match. Because a hash map needs to use the

hashCode and equals method in coordination, hashCode and equals must be consis-

tent. Specifically, the contract for equals and hashCode specifies that, for all objects

x and y, if x.equals(y) returns true, then x.hashCode() and y.hashCode() must return

the same value. The inverse need not be true: two non-equals objects may have the

same hash code (that is, hashing collisions are not forbidden.)

One implication of this consistency requirement is that any class that overrides

equals must also override hashCode in order to satisfy the contract. Many tools

for Java will check that any class that defines equals also defines hashCode, and

vice-versa. (They generally do not check that the two methods as implemented are

actually consistent.)

However, desiring to use objects as keys in hash maps is rare relative to wanting to



CHAPTER 5. APPLICATIONS OF STATIONARY FIELDS 84

use a logical notion of equality. Many classes contain an overridden hashCode method

simply to be consistent with their equals method as a matter of good practice, rather

than for actual intended use as a key in a map. Mutable objects that define equality

in terms of nonstationary fields will have a corresponding hashCode method defined

in terms of nonstationary fields.

hashCode in the Java Standard Libraries

The Java standard libraries contain many cases where a hashCode method is defined

to be consistent with an equals method. Many of these objects are mutable in general.

For example, the library specification defines notions of equality for container types

defined by interfaces such as java.util.List, java.util.Set, and even java.util.Map. This

allows two differently implemented lists, such as one using linked list and another

using an array, to be logically equal if they represent the same sequence of objects.

In order to obey the contract regarding hashCode and equals, these interfaces also

specify how to compute hash codes. Every class implementing any of these interfaces

must implement both equals and hashCode.

Most data structures that implement these interfaces are mutable. For example

java.util.LinkedList, java.util.HashSet, and java.util.HashMap are all mutable. They

all implement equals and hashCode. It is possible to use these data structures as keys

in maps simply by refraining from modifying them once they have been entered into

a map. However, because these implementations are very widely used, it is likely that

they will be used in a mutable fashion somewhere in any program, and will therefore

contain some nonstationary fields.

This highlights a very important limitation of the definition of stationary fields: it

requires fields to be monomorphically stationary. That is, the field must be stationary

in all instances. It is likely that some fields will have the property that all the reads

occur before all the writes on certain instances, but not on others. Relaxing the

definition of stationary fields, such that a field in a particular object could be said to

be stationary even if the same field in another object cannot, would likely significantly

expand its applicability.

The Java standard libraries are the dominant implementer of hashCode, commonly



CHAPTER 5. APPLICATIONS OF STATIONARY FIELDS 85

in container implementations. This is one reason there are many classes that use

nonstationary fields within hashCode methods, even when the effects of the imprecise

call graph are considered.

Cached Hash Codes

Computing a hash code may sometimes be expensive. For example, it may entail

traversing a long string or large linked list. Some objects cache the hash code once

computed so that it may be returned on successive calls without repeating the costly

computation. Typically they do not precompute the value, instead waiting until

hashCode is first invoked by the hash map, and then saving the returned value.

The field caching the hash code is found to be nonstationary by our analysis,

because the hashCode may be invoked once the object is a key in the map, and

is therefore heap-referenced. Furthermore, our stationary fields analysis does not

understand the guard that prevents the cache from being written more than once.

There were several hashCode methods in our program study that fit this pattern.

These methods are also examples of lazy initialization, as discussed in Section 4.1,

although these fields are typically primitives and so not included in the experiment

described in that chapter.



Chapter 6

Related Work

6.1 Immutability in Java

We begin with previous explorations of immutability in Java. Porat et al. [30] pre-

sented an analysis that infers final fields in Java; their implementation focused on

static (class) fields rather than instance fields. Their analysis operated under an

open-world assumption, severely limiting its ability to infer that non-private fields

were final. Nonetheless, they found that static fields not declared final could be in-

ferred to be so. Petchanski and Sarkar [29] used annotations about the immutability of

Java fields to enable optimizations; their implementation used programmer-supplied

annotations, rather than inference. Concurrently to our work, the JQual system per-

formed inference of final fields as one instance of a type qualifier in Java [16]. They

also found many opportunities to add the final keyword.

Several proposals have been made for adding a “read-only” qualifier to Java,

including JAC [20], Universes [26], ModeJava [36], and Javari [39]. These all propose

creating a qualifier to reference types; programs would be forbidden from using a read-

only reference to modify fields. That is, with a read-only reference, the referenced

object cannot be changed. This is orthogonal to final and stationary, which indicate

that the qualified field may not be altered to reference another object. This distinction

is also present in C and C++, where the const keyword may indicate either a pointer

must continue to point to the same object, or that it may not be used to mutate the

86



CHAPTER 6. RELATED WORK 87

object pointed to.

Initialization in object-oriented languages can be quite complex; as we have shown,

these restrictions limit the applicability of final. Others have also developed tech-

niques to cut through the complexity of initialization. For example, Fähndrich and

Xia introduced delayed types [11], which are types for which a specified property

will hold in the future; in the interim, a type system proves that the fields are not

referenced. They apply them to proving that fields are non-null even in the presence

of complex initialization, especially as of circularly referential structures. Their tech-

nique could also be used to show that fields are stationary in the presence of circular

references, which our analysis is unable to do.

6.2 Immutability in Other Languages

Many other languages include some method for indicating value immutability. C [17]

and C++ [37] have const, which depending on use can indicate either a property

similar to final and stationary, or to read-only. C# uses both keywords const and

readonly, depending on whether the value is known at compile-time (const) or not

(readonly.)

The Ruby programming language [38] includes the ability to “freeze” an object,

after which no field of the object may be altered. Enforcement is entirely dynamic;

attempts to modify a frozen object result in an exception.

Languages or libraries may supply both a mutable and immutable version of a

particular data structure. For example, Java provides both strings (immutable) and

string buffers (mutable). Python’s standard types include both tuple, an immutable

sequence type, and list, a mutable one; and both a mutable set and an immutable

frozenset [41]. In Python, only the immutable versions of these types may be used

as keys in dictionaries; this shields the programmer from dangers of changing hash

codes similar to those in Java.



CHAPTER 6. RELATED WORK 88

Foster et al. [13] presented an inference of type qualifiers for C, in which they

discovered that many more consts can be used in C programs than are actually

present; this corroborates our experience that programmers often neglect declarations

of this kind.

6.3 Purity Analysis

Method purity analysis [35, 32] is in some sense a dual stationary fields analysis: a

pure method changes no fields, and a stationary fields is changed by no methods.

Techniques for finding the two will logically share some similarities, in that both will

be computing what objects a piece of code may affect. A large difference is when

the two techniques may give up. Once our analysis has found an effect that renders

a field nonstationary, it can ignore that field throughout the program. Depending

on the exact definition of purity, a purity analysis may be able to stop analyzing a

section of code when it sees the first side effect within it.

6.4 Escape Analysis

In the description of our algorithm we noted a relationship between our algorithm’s

lost objects and the notion of an escaped object defined by escape analysis [34, 9, 28,

4]. An object is said to escape a method if its lifetime exceeds the runtime of that

method. In general escaped does not imply lost, and lost does not imply escaped.

An object may escape a method by being returned directly by the method, in which

it is escaped but not lost. An object may be lost by the creation of a reference in an

object that is local to a method, in which case it is lost but does not escape.

However, many of the ways that an object may escape involve the creation of

a reference. An object may be returned indirectly by a function after the creation

of a reference in some other object that is returned directly. An object may escape

when a reference to it is stored into an object that existed before the method was

invoked. Escape analyses vary in the precision with which they handle the heap. Some

escape analyses assume that any object referred to by other objects may escape; such



CHAPTER 6. RELATED WORK 89

analyses would assume that all of our lost objects could escape.

Some escape analyses attempt to track some objects into the heap, to prove that

they do not escape despite the existence of references. Similar techniques could be

applied to strengthen our stationary fields analysis, finding more stationary fields at

the cost of increased computational expense.

6.5 Stationary Fields and Concurrency

Existing work on reducing synchronization overhead in Java typically focuses on over-

all properties of objects or the locks they use, rather than on individual fields. The use

of a thread escape analysis to eliminate synchronization on objects that are private to

a thread is a common technique [1, 43, 5, 7]. Even if objects are shared, synchroniza-

tion may be eliminated if they are only synchronized by a single thread [33]. These

approaches determine whether an entire object need not be synchronized, without

regard to whether individual fields may not need to be. Other approaches focus on

the locks rather than the objects, for instance eliminating synchronization when a

lock is reentered or when one lock always encloses another [2].

Goetz [14] notes that an object that is composed entirely of final fields may

be shared freely between threads with no need for synchronization operations, and

proposes the use of a Java annotation @Immutable to indicate such objects. Our data

on classes that use only stationary fields suggests that many classes could potentially

be thread-safe, and that an automated tool could effectively infer the annotation.

The race detector rccjava [12] requires that fields that point to locks be final,

in order to ensure that the same lock is always used; this is an example of how

the must-alias property given by stationary fields may be used. Our program study

indicates that few fields are marked final, which is a downside of this requirement.

Using inferred stationary fields would expand the number of fields available to refer

to locks.



CHAPTER 6. RELATED WORK 90

6.6 Correctness of hashCode

Several tools, such as FindBugs [3] and the Java compiler within the Eclipse IDE, at-

tempt to find errors relating to the implementation of hashCode. The errors searched

for by these tools are typically limited to such things as arithmetic errors in the com-

putation of hashCode, or implementing equals without implementing hashCode. No

tool that we are aware of attempts to verify that hashCode returns a consistent value.

The implementations of hashCode and equals may also be generated automatically,

for example by an editor such as Eclipse or JBuilder. Doing so minimizes the risk of

a mismatch between the two methods, or errors such as null pointer exceptions, but

again does not address the problem of a potentially changing hash code.



Chapter 7

Conclusion

This thesis introduced the notion of a stationary field, a field whose value never

changes once its value has been read. We have developed an efficient algorithm

to identify stationary fields. It was surprising that this simple algorithm identifies

approximately half of the fields in Java programs to be stationary.

While the inference of stationary fields is relatively simple compared to other

pointer alias analysis, it yields an important invariant property about object fields.

Previous context-sensitive points-to analyses forgo flow sensitivity and objects are

often named by the allocation site, without context sensitivity. A field in a heap

object usually points to a multitude of objects; such analysis cannot tell if two accesses

of the same field, even if they are right next to each other, yield the very same object.

In contrast, our results show that for about half of the fields, reading the same field

off an object always yields the same result throughout the program.

Stationary fields are very common, but they are certainly not all the fields in

programs. Some programming idioms may interfere with fields being stationary. We

gave two examples: lazy initialization of fields, and modification to fields as objects are

disposed of. Recognizing such idioms and developing tools to identify them allows us

to realize the maximum benefit from stationary fields. There are many programming

idioms and practices, and it is likely that there are many more that interact with

stationary fields.

We showed several applications. Clearly these examples are just first steps in the

91



CHAPTER 7. CONCLUSION 92

application of stationary fields to program analysis; most of the potential applications

are complex research topics in their own right. We are encouraged that, since the prior

publication of portions of this work [40], others have continued the task of determining

how stationary fields can be used [24, 31, 6]. It is not a coincidence that three of the

four applications we present are to concurrent programs: the properties of stationary

fields seem to be very helpful in reasoning about concurrent programs. This is likely

to be a fruitful avenue for future research, especially given that concurrent programs

appear to be increasingly important now that commodity processors are delivering

much of their performance increases in the form of multiple cores.

Finally, our result suggests new approaches to tackling pointer alias analysis in

Java. We can devise different analysis techniques for stationary and nonstationary

fields. We already showed that having a bit more precision during the initialization

phase provides a lot of information for stationary fields. Further analysis of the

initialization code of stationary fields will provide valuable information about the

identities of what the stationary object fields point to. Similarly, better understanding

of nonstationary fields may lead to specialized and more efficient analysis for them

too.



Bibliography

[1] Jonathan Aldrich, Craig Chambers, Emin Gün Sirer, and Susan J. Eggers. Static

analyses for eliminating unnecessary synchronization from java programs. In SAS

’99: Proceedings of the 6th International Symposium on Static Analysis, pages

19–38, London, UK, 1999. Springer-Verlag.

[2] Jonathan Aldrich, Emin Gün Sirer, Craig Chambers, and Susan J. Eggers. Com-

prehensive synchronization elimination for Java. Sci. Comput. Program., 47(2-

3):91–120, 2003.

[3] Nathaniel Ayewah, William Pugh, J. David Morgenthaler, John Penix, and

YuQian Zhou. Evaluating static analysis defect warnings on production software.

In PASTE ’07: Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on

Program analysis for software tools and engineering, pages 1–8, New York, NY,

USA, 2007. ACM.

[4] Bruno Blanchet. Escape analysis for object-oriented languages: application to

Java. SIGPLAN Not., 34(10):20–34, 1999.

[5] Jeff Bogda and Urs Hölzle. Removing unnecessary synchronization in java. SIG-

PLAN Not., 34(10):35–46, 1999.

[6] Nathan G. Bronson, Christos Kozyrakis, and Kunle Olukotun. Feedback-directed

barrier optimization in a strongly isolated stm. In POPL ’09: Proceedings of the

36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, pages 213–225, New York, NY, USA, 2009. ACM.

93



BIBLIOGRAPHY 94

[7] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and

Sam Midkiff. Escape analysis for Java. In OOPSLA ’99: Proceedings of the

14th ACM SIGPLAN conference on Object-oriented programming, systems, lan-

guages, and applications, pages 1–19, New York, NY, USA, 1999. ACM Press.

[8] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented

programs using static class hierarchy analysis. In ECOOP ’95: Proceedings of

the 9th European Conference on Object-Oriented Programming, pages 77–101,

London, UK, 1995. Springer-Verlag.

[9] Alain Deutsch. On determining lifetime and aliasing of dynamically allocated

data in higher-order functional specifications. In POPL ’90: Proceedings of the

17th ACM SIGPLAN-SIGACT symposium on Principles of programming lan-

guages, pages 157–168, New York, NY, USA, 1990. ACM.

[10] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Bejamin Chelf.

Bugs as deviant behavior: A general approach to inferring errors in systems code.

In Proceedings of Eighteenth ACM Symposium on Operating System Principles,

pages 57–72, October 2001.

[11] Manuel Fahndrich and Songtao Xia. Establishing object invariants with delayed

types. In OOPSLA ’07: Proceedings of the 22nd annual ACM SIGPLAN confer-

ence on Object oriented programming systems and applications, pages 337–350,

New York, NY, USA, 2007. ACM.

[12] Cormac Flanagan and Stephen N. Freund. Type-based race detection for Java.

SIGPLAN Not., 35(5):219–232, 2000.

[13] Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. A theory of type

qualifiers. In PLDI ’99: Proceedings of the ACM SIGPLAN 1999 Conference on

Programming Language Design and Implementation, pages 192–203, New York,

NY, USA, 1999. ACM Press.

[14] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes, and

Doug Lea. Java Concurrency in Practice. Addison-Wesley Professional, 2006.



BIBLIOGRAPHY 95

[15] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language

Specification, Third Edition. The Java Series. Addison-Wesley, Boston, Mass.,

2005.

[16] David Greenfieldboyce and Jeffrey S. Foster. Type qualifier inference for Java.

In OOPSLA ’07: Proceedings of the 22nd annual ACM SIGPLAN conference

on Object-oriented programming systems and applications, pages 321–336, New

York, NY, USA, 2007. ACM.

[17] Samuel P. Harbison and Guy Steele. C, A Reference Manual. Prentice-Hall, Inc.,

New York, NY, 1987.

[18] David L. Heine and Monica S. Lam. A practical flow-sensitive and context-

sensitive C and C++ memory leak detector. In PLDI ’03: Proceedings of the

ACM SIGPLAN 2003 Conference on Programming Language Design and Imple-

mentation, pages 168–181, New York, NY, USA, 2003. ACM Press.

[19] David L. Heine and Monica S. Lam. Static detection of leaks in polymorphic

containers. In ICSE ’06: Proceedings of the 28th International Conference on

Software Engineering, pages 252–261, New York, NY, USA, 2006. ACM Press.

[20] Gunter Kniesel and Dirk Theisen. JAC — acess right based encapsulation for

Java. Software — Practice and Experience, 31(6):555–576, 2001.

[21] Ted Kremenek, Paul Twohey, Godmar Back, Andrew Ng, and Dawson Engler.

From uncertainty to belief: inferring the specification within. In USENIX’06:

Proceedings of the 7th conference on USENIX Symposium on Operating Systems

Design and Implementation, pages 12–12, Berkeley, CA, USA, 2006. USENIX

Association.

[22] Viktor Kuncak, Patrick Lam, and Martin Rinard. Role analysis. In POPL ’02:

Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 17–32, New York, NY, USA, 2002. ACM Press.



BIBLIOGRAPHY 96

[23] Benjamin Livshits and Thomas Zimmermann. DynaMine: finding common er-

ror patterns by mining software revision histories. In ESEC/FSE-13: Proceed-

ings of the 10th European software engineering conference held jointly with 13th

ACM SIGSOFT international symposium on Foundations of software engineer-

ing, pages 296–305, New York, NY, USA, 2005. ACM Press.

[24] Alexey Loginov, Eran Yahav, Satish Chandra, Stephen Fink, Noam Rinetzky,

and Mangala Nanda. Verifying dereference safety via expanding-scope analysis.

In ISSTA ’08: Proceedings of the 2008 international symposium on Software

testing and analysis, pages 213–224, New York, NY, USA, 2008. ACM.

[25] Sun Microsystems. Java platform, standard edition 6, API specification. http:

//java.sun.com/javase/6/docs/api/.

[26] Peter Müller and Arnt Poetzch-Heffter. A type system for controlling represen-

tation exposure in Java. In 2nd ECOOP Workshop on Formal Techniques for

Java Programs, 2001.

[27] Matthew Nasielski and Julien Wetterwald. Flows2. http://cs.stanford.edu/

people/wetterwa/cs343/.

[28] Young Gil Park and Benjamin Goldberg. Escape analysis on lists. SIGPLAN

Not., 27(7):116–127, 1992.

[29] Igor Pechtchanski and Vivek Sarkar. Immutability specification and its applica-

tions. In JGI ’02: Proceedings of the 2002 joint ACM-ISCOPE conference on

Java Grande, pages 202–211, New York, NY, USA, 2002. ACM Press.

[30] Sara Porat, Marina Biberstein, Larry Koved, and Bilha Mendelson. Automatic

detection of immutable fields in Java. In CASCON ’00: Proceedings of the 2000

Conference of the Centre for Advanced Studies on Collaborative research, page 10.

IBM Press, 2000.

http://java.sun.com/javase/6/docs/api/
http://java.sun.com/javase/6/docs/api/
http://cs.stanford.edu/people/wetterwa/cs343/
http://cs.stanford.edu/people/wetterwa/cs343/


BIBLIOGRAPHY 97

[31] Ian Rogers, Jisheng Zhao, Chris Kirkham, and Ian Watson. Constraint based

optimization of stationary fields. In PPPJ ’08: Proceedings of the 6th inter-

national symposium on Principles and practice of programming in Java, pages

95–104, New York, NY, USA, 2008. ACM.

[32] Atanas Rountev. Precise identification of side-effect-free methods in java. In

ICSM ’04: Proceedings of the 20th IEEE International Conference on Software

Maintenance, pages 82–91, Washington, DC, USA, 2004. IEEE Computer Soci-

ety.

[33] Erik Ruf. Effective synchronization removal for Java. SIGPLAN Not., 35(5):208–

218, 2000.

[34] C. Ruggieri and T. P. Murtagh. Lifetime analysis of dynamically allocated ob-

jects. In POPL ’88: Proceedings of the 15th ACM SIGPLAN-SIGACT sympo-

sium on Principles of programming languages, pages 285–293, New York, NY,

USA, 1988. ACM.

[35] A. Salcianu and M. Rinard. Purity and side effect analysis for Java programs.

Lecture Notes in Computer Science, 3385:199–215, 2005.

[36] Mats Skoglund and Tobias Wrigstad. A mode system for readonly references.

In Akos Frohner, editor, Formal Techniques for Java Programs, number 2323 in

Object-Oriented Technology, ECOOP 2001 Workshop Reader, pages 30–, Berlin,

Heidelberg, New York, 2001. Springer-Verlag.

[37] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2000.

[38] Dave Thomas, Chad Fowler, and Andy Hunt. Programming Ruby: The Prag-

matic Programmer’s Guide, Second Edition. Addison-Wesley, 2005.

[39] Matthew S. Tschantz and Michael D. Ernst. Javari: Adding reference immutabil-

ity to Java. In Object-Oriented Programming Systems, Languages, and Appli-

cations (OOPSLA 2005), pages 211–230, San Diego, CA, USA, October 18–20

2005.



BIBLIOGRAPHY 98

[40] Christopher Unkel and Monica S. Lam. Automatic inference of stationary fields:

a generalization of Java’s final fields. In POPL ’08: Proceedings of the 35th

annual ACM SIGPLAN-SIGACT symposium on Principles of programming lan-

guages, pages 183–195, New York, NY, USA, 2008. ACM.

[41] Guido Van Rossum and Fred L. Drake. The Python Language Reference Manual

(version 2.5). Network Theory Ltd., September 2003.

[42] John Whaley. Joeq: A virtual machine and compiler infrastructure. In Proceed-

ings of the SIGPLAN Workshop on Interpreters, Virtual Machines, and Emula-

tors, pages 58–66, June 2003.

[43] John Whaley and Martin Rinard. Compositional pointer and escape analysis for

Java programs. In OOPSLA ’99: Proceedings of the 14th ACM SIGPLAN con-

ference on Object-oriented programming, systems, languages, and applications,

pages 187–206, New York, NY, USA, 1999. ACM Press.

[44] Chadd C. Williams and Jeffrey K. Hollingsworth. Recovering system specific

rules from software repositories. In MSR ’05: Proceedings of the 2005 inter-

national workshop on Mining software repositories, pages 1–5, New York, NY,

USA, 2005. ACM Press.

[45] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir

Das. Perracotta: mining temporal API rules from imperfect traces. In ICSE ’06:

Proceeding of the 28th international conference on Software engineering, pages

282–291, New York, NY, USA, 2006. ACM Press.


	Abstract
	Acknowledgements
	Introduction
	Final Fields in Java
	Automatic Inference of Final Fields
	Stationary Fields
	Inferring Stationary Fields
	Experimental Results
	Contributions
	Paper Organization

	Stationary Fields
	Stationary and Nonstationary Fields
	Final Fields
	Verifying Final Fields
	Inferring Final

	Inferring Stationary Fields
	Program Representation
	Effect of Each Method
	Effect of Each Statement
	Inference Rules
	Solution Procedure


	Study of Programs
	Methodology
	Static Analysis of Stationary and Final Fields
	Stationary Nonfinal Fields
	Inferred Final Fields
	Nonstationary Final Fields
	Semi-Stationary Fields

	Implementation Validation with Dynamic Analysis
	Dynamic Analysis of Stationary and Final Fields
	Bounds Derived from Dynamic Analysis
	Distribution of Stationary and Nonstationary Fields Within Objects
	Value Classes


	Extensions to the Definition
	Lazy Initialization
	Algorithm
	Program Study

	Object Disposal
	Motivation
	Algorithm
	Program Study
	Resource Management
	Other Uses of Null


	Applications of Stationary Fields
	Lock Elision
	Stationary Fields and Races
	Unnecessary Synchronizations
	Algorithm
	Experimental Results

	Optimizing a Software Transactional Memory
	Experimental Results

	Optimizing Interthread Communication Monitoring
	Motivation
	Dynamically Monitoring Thread Communication with Tags
	Reducing the Space Overhead with Stationary Fields
	Experimental Setup
	Experimental Results

	The Java Hash Code Method
	Background
	Stationary Fields and hashCode
	Algorithm
	Program Study


	Related Work
	Immutability in Java
	Immutability in Other Languages
	Purity Analysis
	Escape Analysis
	Stationary Fields and Concurrency
	Correctness of hashCode

	Conclusion
	Bibliography

